
Continual Learning

VISMAC 23

Simone Calderara Angelo Porrello

AImageLab
University of Modena and Reggio Emilia, Italy

Agenda

Introduction

Continual Learning

Architectural approaches

Regularization approaches

Rehearsal approaches

Continual with Pre-trained models

Credits

1

Introduction

Humans and memories

Human intelligence. Human beings can learn new tasks and, at the same time,
they can remember what learned before.CATASTROPHIC FORGETTING IN NEURAL NETWORKS

Human intelligence: we learn new tasks while remembering what we learned thus far.

Instead, Neural Networks trained on a changing stream of data, forget old tasks when focusing
on the current examples.

LEARN TO DISTINGUISH
CATS AND DOGS

①

LEARN TO DISTINGUISH
CARS AND BOATS

② ③
THIS IS A

DOG

A HUMAN REMEMBERS TASK ①

LEARN TO DISTINGUISH
CATS AND DOGS

①

LEARN TO DISTINGUISH
CARS AND BOATS

② ③
THIS IS A

CAR

AN AI OVERWRITES TASK ① WITH TASK ② 2

Neural Networks and memories

Catastrophic Forgetting. Instead, Neural Networks, when trained on a sequence
of tasks, forget old tasks: i.e., they may perform well on the examples of the
current task, but their capabilities on old tasks drop.

CATASTROPHIC FORGETTING IN NEURAL NETWORKS
Human intelligence: we learn new tasks while remembering what we learned thus far.

Instead, Neural Networks trained on a changing stream of data, forget old tasks when focusing
on the current examples.

LEARN TO DISTINGUISH
CATS AND DOGS

①

LEARN TO DISTINGUISH
CARS AND BOATS

② ③
THIS IS A

DOG

A HUMAN REMEMBERS TASK ①

LEARN TO DISTINGUISH
CATS AND DOGS

①

LEARN TO DISTINGUISH
CARS AND BOATS

② ③
THIS IS A

CAR

AN AI OVERWRITES TASK ① WITH TASK ②

3

Humans vs Neural Networks

Barnes & Underwood first highlight the dynamics of forgetting in 1959.

• Task 1: subjects learn a series of
word pairs (e.g., home-star, field-sky,
...);

• Task 2: right-hand items of pairs
change (e.g., home-field, field-car,
...).

Result. Human subjects forget about
pairs from Task 1 as more pairs from
Task 2 are observed…

HUMAN V NEURAL NET

Barnes & Underwood1 first highlight the

dynamics of forgetting in 1959.

• Task 1: subjects learn a series of word

pairs (e.g.; home-star, field-sky, …);

• Task 2: right-hand items of pairs change

(e.g.; home-field, field-car, …).

Human subjects forget about pairs from

Task 1 as more pairs from Task 2 are

observed…

1. Barnes & Underwood. “Fate” of first-list associations in transfer theory. J Exp. Psychol, 1959.

TA
SK 2

TASK 1

Barnes & Underwood. “Fate” of first-list associations in transfer theory. J Exp. Psychol, 1959. 4

Humans vs Neural Networks (2)

In 1989, McCloskey & Cohen repeat the
same experiment with Artificial Neural
Networks.

They find that degradation is much more
severe in NNs: a few learning steps are
enough to drive accuracy to zero.

This is an intrinsic property of NNs,
which they call Catastrophic
Forgetting.

HUMAN V NEURAL NET

In 1989, McCloskey & Cohen repeat the

same experiment with artificial neural

networks2.

They find that degradation is much more

severe in NNs: a few learning steps are

enough to drive accuracy to zero.

This is an intrinsic property of NNs, which

they call Catastrophic Forgetting.

2. McCloskey & Cohen. Catastrophic interference in connectionist networks: The sequential learning problem. Psychol Learn Motiv, 1989

TA
SK 2

TASK 1

TA
SK

 2

TASK 1

Humans
Neural Nets

McCloskey & Cohen. Catastrophic interference in connectionist networks: The sequential learning
problem. Psychol Learn Motiv, 1989

5

Catastrophic forgetting: why?

So, Neural Networks forget.

Why? How?

6

Catastrophic forgetting: why?

So, Neural Networks forget.

Why? How?

It is principally due to the optimization algorithm (i.e., gradient descent or its
stochastic variants – SGD).

7

Catastrophic forgetting: why? (2)

A NN has its set of parameters W

(i.e., a set of weights and biases).

Optimization starts from a random
point W0 in parameter space and
reaches a local minimum, within a
region where the error is small on
the task being learned.

low error
for task A

W0

(initialization)

8

Catastrophic forgetting: why? (3)

Given a task A:

Optimization starts from a random
point W0 in parameter space and
reaches a local minimum WA, within
a region where the error is small on
the task being learned.

WA

low error
for Task A

optimum
for Task A

W0

(initialization)

SGD on
Task A

9

Catastrophic forgetting: why? (4)

Considering a second incoming task
B:

The task B has its own loss
landscape that the network is going
to optimize, irrespective of the error
of any other task.

WA

low error
for Task B

low error
for Task A

optimum
for Task A

W0

(initialization)

SGD on
Task A

10

Catastrophic forgetting: why? (5)

To change its behavior or learn how
to perform the second task, the
network must change its parameters.

SGD moves without constraints
throughout a new region in
parameter space, until it reaches a
new local optimum WB.

→ Catastrophic forgetting.
• Loss for Task B: low :)
• Loss for Task A: high :(

WA

low error
for Task B

low error
for Task A

optimum
for Task A

optimum
for Task B

WB

SGD on Task b

11

Catastrophic forgetting: why? (5)

Theoretically, NNs are
over-parametrized.

Over-parameterization makes it
likely that there is a solution for
Task B, WA+B, that is close to the
previously found solution for Task A,
WA.

WA

low error
for both

WB

WA+B

low error
for Task B

low error
for Task A

optimum
for Task A

optimum
for Task B

SGD on Task b

12

Catastrophic forgetting: why? (6)

Continual Learning techniques
aim at protecting the
performance in previous tasks by
constraining the subsequent
learning (e.g., to stay in a region
of low error for Task A).

Challenge. Do it with no access
to the examples of Task A.

WA

low error
for both

WB

WA+B

low error
for Task B

low error
for Task A

optimum
for Task A

optimum
for Task B

SGD on Task b

13

Continual Learning (CL)

Continual Learning (CL) studies
how to train a ML system from a
stream of changing data.

It’s a rapidly growing new trend
in ML research.

CONTINUAL LEARNING
Continual Learning (CL) studies how to train a ML system from a stream of

changing data while relieving catastrophic forgetting without retraining.

It’s a rapidly growing new trend in ML research.

Beyond academia: cutting-edge startups and ML-driven corps are pioneering CL solutions.

Google Trend for
“CONTINUAL LEARNING”

Number of CL publications in major AI conferences

CONTINUAL LEARNING
Continual Learning (CL) studies how to train a ML system from a stream of
changing data while relieving catastrophic forgetting without retraining.

It’s a rapidly growing new trend in ML research.

Beyond academia: cutting-edge startups and ML-driven corps are pioneering CL solutions.

Google Trend for
“CONTINUAL LEARNING”

Number of CL publications in major AI conferences

14

Continual Learning (CL)

Beyond academia: cutting-edge startups and ML-driven corps are pioneering CL
solutions.

CONTINUAL LEARNING
Continual Learning (CL) studies how to train a ML system from a stream of

changing data while relieving catastrophic forgetting without retraining.

It’s a rapidly growing new trend in ML research.

Beyond academia: cutting-edge startups and ML-driven corps are pioneering CL solutions.

Google Trend for
“CONTINUAL LEARNING”

Number of CL publications in major AI conferences

15

A common CL scenario

A CL classification problem is split in T tasks; during each task t ∈ {1, ...,T} input
samples x and their corresponding ground truth labels y are drawn from an i.i.d.
distribution Dt.

Figure 1: Schematic of split MNIST task protocol.

Table 2: Split MNIST according to each scenario.

Task-IL With task given, is it the 1st or 2nd class?
(e.g., 0 or 1)

Domain-IL With task unknown, is it a 1st or 2nd class?
(e.g., in [0, 2, 4, 6, 8] or in [1, 3, 5, 7, 9])

Class-IL With task unknown, which digit is it?
(i.e., choice from 0 to 9)

Firstly, the multi-headed vs single-headed distinction is tied to the architectural layout of a network’s
output layer, while our scenarios more generally reflect the conditions under which a model is
evaluated. Although in the continual learning literature a multi-headed layout (i.e., using a separate
output layer for each task) is the most common way to use task identity information, it is not the only
way. Similarly, a single-headed layout (i.e., using the same output-layer for every task) might by
itself not require task identity to be known, it is still possible for the model to use task identity in
other ways (e.g., in its hidden layers, as in [4]).

Secondly, our categorization scheme extends upon the multi-headed vs single-headed split by recog-
nizing that when task identity is not provided, there is a further distinction depending on whether the
network is explicitly required to infer task identity. Importantly, we will show that the two scenarios
resulting from this additional split substantially differ in difficulty (see section 5).

2.2 Example Task Protocols

To demonstrate the difference between the three continual learning scenarios, and to illustrate that
any task protocol can be performed according to each scenario, we will perform two different task
protocols for all three scenarios.

The first task protocol is sequentially learning to classify MNIST-digits (‘split MNIST’ [7]; Figure 1).
In the recent literature, this task protocol has been performed under the Task-IL scenario (in which
case it is sometimes referred to as ‘multi-headed split MNIST’) and under the Class-IL scenario (in
which case it is referred to as ‘single-headed split MNIST’), but it could also be performed under the
Domain-IL scenario (Table 2).

The second task protocol is ‘permuted MNIST’ [16], in which each task involves classifying all ten
MNIST-digits but with a different permutation applied to the pixels for every new task (Figure 2).
Although permuted MNIST is most naturally performed according to the Domain-IL scenario, it can
be performed according to the other scenarios too (Table 3).

2.3 Task Boundaries

The scenarios described in this report assume that during training there are clear and well-defined
boundaries between the tasks to be learned. If there are no such boundaries between tasks—for
example because transitions between tasks are gradual or continuous—the scenarios we describe here
no longer apply, and the continual learning problem becomes less structured and potentially a lot
harder. Among others, training with randomly-sampled minibatches and multiple passes over each
task’s training data are no longer possible. We refer to [12] for a recent insightful treatment of the
paradigm without well-defined task-boundaries.

3

A function f , with parameters θ, has to be optimized on one task at a time, in a
sequential manner.

Image from ”Three scenarios for continual learning” by Gido M. van de Ven et. al. (2019).
16

Common objective

GOAL: to correctly classify, at any given point in training, examples from any of the
observed tasks up to the current one t ∈ {1, . . . , tc}:

argmin
θ

tc∑
t=1

Lt, where Lt , E(x,y)∼Dt

[
`(y, fθ(x))

]
. (1)

Challenge. Data from previous tasks are assumed to be unavailable, meaning that
the best configuration of θ w.r.t. L1...tc must be sought without Dt for
t ∈ {1, . . . , tc − 1}.

17

A simple approach: Elastic Weight Consolidation (1)

Elastic Weigth Consolidation (EWC). Introduced by Kirkpatrick et. al. in 2017, it is
one of first approaches to deal with catastrophic forgetting.

Biologically inspired. EWC takes inspiration from brains.

• Plasticity. The ability of the nervous system to change its activity in response
to intrinsic or extrinsic stimuli by reorganizing its structure, functions, or
connections.

• Synaptic consolidation enables continual learning by reducing the plasticity
of synapses that are vital to previously learned tasks.

18

Elastic Weight Consolidation (2)

Synaptic consolidation enables continual learning by reducing the plasticity of
synapses that are vital to previously learned tasks.

Similarly, EWC constraints important
parameters to stay close to their old
values through a tailored regularization
loss (a quadratic penalty).

L(θ) = LB(θ) +
∑

i

λ

2
Fi(θi − θ∗A,i)

2

Image from ”Overcoming catastrophic forgetting in neural networks” by Kirkpatrick et. al. (2017).

19

Elastic Weight Consolidation (3)

Similarly, EWC constraints important parameters to stay close to their old values
through a tailored regularization loss (a quadratic penalty).

L(θ)︸︷︷︸
Total loss

to be optimized

= LB(θ)︸ ︷︷ ︸
Loss for Task B only
e.g. the Cross-Entropy

+
∑

i

λ

2
Fi(θi − θ∗A,i)

2

︸ ︷︷ ︸
EWC regularization

objective

where:

• θ∗A is the set of optimum parameters for the previous task A
• Fi is an estimate of how much each parameter θ∗A,i is important for
preserving the performance in task A

• λ is an hyper-parameter.
20

Elastic Weight Consolidation (4)

Similarly, EWC constraints important parameters to stay close to their old values
through a tailored regularization loss (a quadratic penalty).

L(θ)︸︷︷︸
Total loss

to be optimized

= LB(θ)︸ ︷︷ ︸
Loss on Task B

e.g. the Cross-Entropy

+
∑

i

λ

2
Fi(θi − θ∗A,i)

2

︸ ︷︷ ︸
EWC regularization

objective

It can be imagined as a spring anchoring the parameters to the previous solution,
hence the name elastic.

Importantly, the stiffness of this spring should not be the same for all parameters;
rather, it should be greater for those parameters that matter most to the
performance during task A.

21

How to estimate per-parameter importance?

The formula introduced in the previous slides requires to determine which
parameters are important.

How? Many heuristics could be envisioned; EWC uses the diagonal of the
empirical Fisher Information Matrix computed at the optimum of the first task θ∗A.

Iθ∗A =
1
N

N∑
i=1

∇θlog p(x(i)A |θ
∗
A)︸ ︷︷ ︸

gradients of the loss function

∇θlog p(x(i)A |θ
∗
A)

T

It can be computed from first-order derivatives (easy to calculate) by a simple
moving average of squared gradients.

Check the PyTorch implementation here or here.
22

https://github.com/aimagelab/mammoth/blob/master/models/ewc_on.py
https://github.com/moskomule/ewc.pytorch/blob/master/utils.py#L29-L48

Fisher Information Matrix

There is a theoretical relation between the
empirical Fisher Information Matrix (FIM) and the
second derivative of the loss near a minimum.

As such, the FIM captures the curvature of the
log likelihood function: a high Fisher information
indicates that the log likelihood is sharply
peaked there.

For such a reason, it would be inconvenient to
modify the corresponding weight.

High 2nd derivative
high importance, high penalty

Small 2nd derivative
low importance, low penalty

loss on
Task A

23

Continual Learning

Continual Learning Benchmarks

Continual Learning approaches are predominantly evaluated on abstract image
classification settings:

• Sequential MNIST: Task 1: classify 0 and 1;
Task 2: classify 2 and 3, etc.

• Sequential CIFAR: Task 1: airplane vs car;
Task 2: bird vs cat, etc.

• Rotated MNIST: classify digits with rotation
changing.

• Permuted MNIST: classify digits with a
different pixel permutation for each task.

Continual Learning Benchmarks

• In literature, Continual Learning approaches
are predominantly evaluated on abstract
image classification settings
• Sequential MNIST: Task 1: classify 0 and

1; Task 2: classify 2 and 3, etc.
• Sequential CIFAR: Task 1: airplane vs

car; Task 2: bird vs cat, etc.
• Rotated MNIST: classify digits with

rotation changing.
• Permuted MNIST: classify digits with a

different pixel permutation for each task

• Long and complex benchmarks are regarded
as more realistic, but can be quite demanding
in terms of total compute

12/06/23 16Knowledge Distillation & Continual LearningLong and complex benchmarks are regarded as more realistic, but can be quite
demanding in terms of total compute. 24

Evaluation protocol

Train/test splits. Each task is split into training and test sets.

• Training phase: the model learns the tasks in a sequential manner.
• Testing phase: the model is evaluated all on the test sets jointly (order does
not matter).

Multiple epochs are usually allowed on each task, so that the model can fit the
current task well.

Hyperparameter tuning and cross-validation Unfortunately, no established and
common practices already exist.

25

Metrics

Metrics. The average accuracy is the most common one.

Formally. Given a test set for each of the T tasks, and indicating with Ri,j the test
classification accuracy on task tj after observing the last sample from task ti, we
have:

Average Accuracy: ACC =
1
T

T∑
i=1

RT,i. (2)

It can be measured either at any given point within the tasks’ sequence, or after
the end of the last task (as in the formula).

Other metrics could be used, such as Backward and Forward Transfer (BWT and
FWT), introduced by David Lopez-Paz et. al. in ”Gradient Episodic Memory for
Continual Learning”. 26

Evaluation and metrics
Published as a conference paper at ICLR 2018

1 2 3 4 5 6 7 8 9 10
tasks

0.6

0.7

0.8

0.9

1.0

A
cc

u
ra

cy

SI (best, � = 0.5)

EWC (best, � = 100)

EWC (� = 1)

LP (best, � = 0.1)

LP (� = 1)

VCL

VCL + Random Coreset

Random Coreset Only

VCL + K-center Coreset

K-center Coreset Only

Figure 2: Average test set accuracy on all observed tasks in the Permuted MNIST experiment.

1 2 3 4 5 6 7 8 9 10
tasks

0.80

0.85

0.90

0.95

A
cc

u
ra

cy

VCL

VCL + Coreset (200)

VCL + Coreset (400)

VCL + Coreset (1000)

VCL + Coreset (2500)

VCL + Coreset (5000)

Coreset only (200)

Coreset only (400)

Coreset only (1000)

Coreset only (2500)

Coreset only (5000)

Figure 3: Comparison of the effect of coreset sizes in the Permuted MNIST experiment.

6.1 EXPERIMENTS WITH DEEP DISCRIMINATIVE MODELS

We consider the following three continual learning experiments for deep discriminative models.

Permuted MNIST: This is a popular continual learning benchmark (Goodfellow et al., 2014a; Kirk-
patrick et al., 2017; Zenke et al., 2017). The dataset received at each time step Dt consists of labeled
MNIST images whose pixels have undergone a fixed random permutation. We compare VCL to
EWC, SI, and diagonal LP. For all algorithms, we use fully connected single-head networks with
two hidden layers, where each layer contains 100 hidden units with ReLU activations. We evaluate
three versions of VCL: VCL with no coreset, VCL with a random coreset, and VCL with a coreset
selected by the K-center method. For the coresets, we select 200 data points from each task.

Figure 2 compares the average test set accuracy on all observed tasks. From this figure, VCL out-
performs EWC, SI, and LP by large margins, even though they benefited from an extensive hyper-
parameter search for �. Diagonal LP performs slightly worse than EWC both when � = 1 and when
the values of � are tuned. After 10 tasks, VCL achieves 90% average accuracy, while EWC, SI, and
LP only achieve 84%, 86%, and 82% respectively. The results also show that the coresets perform
poorly by themselves, but combining them with VCL leads to a modest improvement: both random
coresets and K-center coresets achieve 93% accuracy.

We also investigate the effect of the coreset size. In fig. 3, we plot the average test set accuracy of
VCL with random coresets of different sizes. At the coreset size of 5,000 examples per task, VCL
achieves 95.5% accuracy after 10 tasks, which is significantly better than the 90% of vanilla VCL.
Performance improves with the coreset size although it asymptotes for large coresets as expected: if
a sufficiently large coreset is employed, it will be fully representative of the task and thus training
on the coreset alone can achieve a good performance. However, the experiments show that the
combination of VCL and coresets is advantageous even for large coresets.

7

Image from ”Variational Continual Learning” by Nguyen et. al. (2017).
27

Continual Learning: three scenarios

Three main evaluation scenarios:

• Task-Incremental Learning (Task-IL)
• Class-Incremental Learning (Class-IL)
• Domain-Incremental Learning (Domain-IL)

28

Task-Incremental Learning (Task-IL)

Task-Incremental Learning (Task-IL)

• During training, each task is learned separately;
• At test time, each example to be tested is coupled with its task identity,
indicating the index of the task the example belongs to.

• This way, the model can select the right classification head.

Continual Learning Settings

• Suppose we want to classify MNIST digits, we can
formulate the problem in different ways [3]…

• Task Incremental: each task is learned separately,
at inference time they are evaluated separately (i.e.
the model knows the task identity at test time)

• Class Incremental: each task is learned
separately, at inference time the model must be
able to classify data from all tasks jointly

• Domain Incremental: if tasks are characterized by
a data transformation (e.g. rotations, permutations),
data must be classified regardless of the latter

12/06/23 17Knowledge Distillation & Continual Learning

-! -%

TA
SK
-IL

CL
AS
S-
IL

DO
M
AI
N-
IL

29

Class-Incremental Learning (Class-IL)

Class-Incremental Learning (Class-IL)

• As in Task-IL, each task is learned separately during training;
• Differently from Task-IL, task identities are not provided at test time;
• Class-IL is more challenging, as the model has to guess the correct class
among all the classes seen so far.

Continual Learning Settings

• Suppose we want to classify MNIST digits, we can
formulate the problem in different ways [3]…

• Task Incremental: each task is learned separately,
at inference time they are evaluated separately (i.e.
the model knows the task identity at test time)

• Class Incremental: each task is learned
separately, at inference time the model must be
able to classify data from all tasks jointly

• Domain Incremental: if tasks are characterized by
a data transformation (e.g. rotations, permutations),
data must be classified regardless of the latter

12/06/23 17Knowledge Distillation & Continual Learning

-! -%

TA
SK
-IL

CL
AS
S-
IL

DO
M
AI
N-
IL

30

Domain-Incremental Learning (Domain-IL)

Domain-Incremental Learning (Domain-IL)

• Differently from both Task-IL and Class-IL, the set of classes remains stable
across the tasks and does not grow,

• Each task introduces a domain shift, a change in the underlying probability
distribution the input are sampled from,

• It may be simulated through data transformation (e.g. rotations,
permutations),

Continual Learning Settings

• Suppose we want to classify MNIST digits, we can
formulate the problem in different ways [3]…

• Task Incremental: each task is learned separately,
at inference time they are evaluated separately (i.e.
the model knows the task identity at test time)

• Class Incremental: each task is learned
separately, at inference time the model must be
able to classify data from all tasks jointly

• Domain Incremental: if tasks are characterized by
a data transformation (e.g. rotations, permutations),
data must be classified regardless of the latter

12/06/23 17Knowledge Distillation & Continual Learning

-! -%

TA
SK
-IL

CL
AS
S-
IL

DO
M
AI
N-
IL

31

Other scenarios in literature

General Continual Learning: no clear
boundaries between subsequent tasks;
the data distribution is supposed to
change smoothly over time.

Online Class-IL/Task-IL: only a single
pass (epoch) is allowed on each task.

Continual Learning (CL)

Task 1 Task 2 Task 3

General Continual Learning (GCL)

(X, y, T=1) (X, y, T=2) (X, y, T=3)

(X, y) (X, y) (X, y) (X, y)

32

Other scenarios in literature (2)

Continual semi-supervised/self-supervised learning: examples may be either
partly labeled, or completely unlabeled.

Data-Incremental Learning (Data-IL): the set of classes is stable across tasks; the
tasks derive from different partitions of the original training set.

N.B. In this lecture, we will focus on Class-IL, which is by far the most
studied.

33

A taxonomy of CL approaches

CL approaches are typically categorized
into three categories:

• Architectural methods: distinct
sub-models for distinct tasks.

• Regularization methods: specific
loss terms (weight importance,
knowledge distillation) to prevent
the model from changing.

• Replay methods: store previously
seen examples in a memory buffer
and use them in later iterations.

Continual Learning Approaches

CL approaches are typically categorized into [4]:
• Architectural methods: distinct sub-models for distinct tasks.
✓ Usually very accurate
✗ Huge memory requirements

• Regularization methods: specific loss terms (weight
importance, knowledge distillation) to prevent the model from
changing.
✓ Bounded memory cost
✗ Not very effective on long tasks

• Replay methods: store previously seen examples in a
memory buffer and use them in later iterations.
✓ Simple and straightforward
✗ Performance proportional to memory size

12/06/23 18Knowledge Distillation & Continual Learning

34

Architectural approaches

Weight sharing

Observation. NNs forget as the updates introduced in later tasks overwrite the
optimal parametrization attained for past tasks.

• Learning all incremental tasks with a shared set of parameters (i.e., a single
model as well as one parameter space) is a major cause of the inter-task
interference.

How can we mitigate it?

35

Architectural approaches

Architectural methods devote distinct sub-models/task-specific
parameters for distinct tasks.

Main idea. adding new parameters, tailored
for the new tasks.

These approaches isolate parameters for
specific tasks and can guarantee maximal
stability by fixing the parameter subsets of
previous tasks.

Image from ”Progressive Neural Networks” (PNN) by
Rusu et. al. (2016).

of tasks is novel. Second, we extensively evaluate the model in complex reinforcement learning
domains. In the process, we also evaluate alternative approaches to transfer (such as finetuning) within
the RL domain. In particular, we show that progressive networks provide comparable (if not slightly
better) transfer performance to traditional finetuning, but without the destructive consequences.
Finally, we develop a novel analysis based on Fisher Information and perturbation which allows us to
analyse in detail how and where transfer occurs across tasks.

2 Progressive Networks

Continual learning is a long-standing goal of machine learning, where agents not only learn (and
remember) a series of tasks experienced in sequence, but also have the ability to transfer knowledge
from previous tasks to improve convergence speed [20]. Progressive networks integrate these
desiderata directly into the model architecture: catastrophic forgetting is prevented by instantiating
a new neural network (a column) for each task being solved, while transfer is enabled via lateral
connections to features of previously learned columns. The scalability of this approach is addressed
at the end of this section.

A progressive network starts with a single column: a deep neural network having L layers with
hidden activations h(1)

i 2 Rni , with ni the number of units at layer i  L, and parameters ⇥(1)

trained to convergence. When switching to a second task, the parameters ⇥(1) are “frozen” and a new
column with parameters ⇥(2) is instantiated (with random initialization), where layer h(2)

i receives
input from both h(2)

i�1 and h(1)
i�1 via lateral connections. This generalizes to K tasks as follows: 1:

h(k)
i = f

0

@W (k)
i h(k)

i�1 +
X

j<k

U (k:j)
i h(j)

i�1

1

A , (1)

where W (k)
i 2 Rni⇥ni�1 is the weight matrix of layer i of column k, U (k:j)

i 2 Rni⇥nj are the lateral
connections from layer i� 1 of column j, to layer i of column k and h0 is the network input. f is
an element-wise non-linearity: we use f(x) = max(0, x) for all intermediate layers. A progressive
network with K = 3 is shown in Figure 1.

output2 output3output1

input

h(2)
2 h(3)

2h(1)
2

h(1)
1 h(2)

1 h(3)
1

a a

a a

Figure 1: Depiction of a three column progressive network. The first two columns on the left (dashed arrows)
were trained on task 1 and 2 respectively. The grey box labelled a represent the adapter layers (see text). A third
column is added for the final task having access to all previously learned features.

These modelling decisions are informed by our desire to: (1) solve K independent tasks at the end of
training; (2) accelerate learning via transfer when possible; and (3) avoid catastrophic forgetting.

In the standard pretrain-and-finetune paradigm, there is often an implicit assumption of “overlap”
between the tasks. Finetuning is efficient in this setting, as parameters need only be adjusted
slightly to the target domain, and often only the top layer is retrained [23]. In contrast, we make
no assumptions about the relationship between tasks, which may in practice be orthogonal or even
adversarial. While the finetuning stage could potentially unlearn these features, this may prove
difficult. Progressive networks side-step this issue by allocating a new column for each new task,
whose weights are initialized randomly. Compared to the task-relevant initialization of pretraining,

1Progressive networks can also be generalized in a straightforward manner to have arbitrary network width
per column/layer, to accommodate varying degrees of task difficulty, or to compile lateral connections from
multiple, independent networks in an ensemble setting. Biases are omitted for clarity.

2

36

Progressive Neural Networks

An example: Progressive Neural Networks
(PNN) by Rusu et. al..

In PNN, Catastrophic forgetting is prevented
by instantiating a new neural network (a
column) for each task being solved, while
transfer is enabled via lateral connections
to features of previously learned columns.

Image from ”Progressive Neural Networks” (PNN) by
Rusu et. al. (2016).

of tasks is novel. Second, we extensively evaluate the model in complex reinforcement learning
domains. In the process, we also evaluate alternative approaches to transfer (such as finetuning) within
the RL domain. In particular, we show that progressive networks provide comparable (if not slightly
better) transfer performance to traditional finetuning, but without the destructive consequences.
Finally, we develop a novel analysis based on Fisher Information and perturbation which allows us to
analyse in detail how and where transfer occurs across tasks.

2 Progressive Networks

Continual learning is a long-standing goal of machine learning, where agents not only learn (and
remember) a series of tasks experienced in sequence, but also have the ability to transfer knowledge
from previous tasks to improve convergence speed [20]. Progressive networks integrate these
desiderata directly into the model architecture: catastrophic forgetting is prevented by instantiating
a new neural network (a column) for each task being solved, while transfer is enabled via lateral
connections to features of previously learned columns. The scalability of this approach is addressed
at the end of this section.

A progressive network starts with a single column: a deep neural network having L layers with
hidden activations h(1)

i 2 Rni , with ni the number of units at layer i  L, and parameters ⇥(1)

trained to convergence. When switching to a second task, the parameters ⇥(1) are “frozen” and a new
column with parameters ⇥(2) is instantiated (with random initialization), where layer h(2)

i receives
input from both h(2)

i�1 and h(1)
i�1 via lateral connections. This generalizes to K tasks as follows: 1:

h(k)
i = f

0

@W (k)
i h(k)

i�1 +
X

j<k

U (k:j)
i h(j)

i�1

1

A , (1)

where W (k)
i 2 Rni⇥ni�1 is the weight matrix of layer i of column k, U (k:j)

i 2 Rni⇥nj are the lateral
connections from layer i� 1 of column j, to layer i of column k and h0 is the network input. f is
an element-wise non-linearity: we use f(x) = max(0, x) for all intermediate layers. A progressive
network with K = 3 is shown in Figure 1.

output2 output3output1

input

h(2)
2 h(3)

2h(1)
2

h(1)
1 h(2)

1 h(3)
1

a a

a a

Figure 1: Depiction of a three column progressive network. The first two columns on the left (dashed arrows)
were trained on task 1 and 2 respectively. The grey box labelled a represent the adapter layers (see text). A third
column is added for the final task having access to all previously learned features.

These modelling decisions are informed by our desire to: (1) solve K independent tasks at the end of
training; (2) accelerate learning via transfer when possible; and (3) avoid catastrophic forgetting.

In the standard pretrain-and-finetune paradigm, there is often an implicit assumption of “overlap”
between the tasks. Finetuning is efficient in this setting, as parameters need only be adjusted
slightly to the target domain, and often only the top layer is retrained [23]. In contrast, we make
no assumptions about the relationship between tasks, which may in practice be orthogonal or even
adversarial. While the finetuning stage could potentially unlearn these features, this may prove
difficult. Progressive networks side-step this issue by allocating a new column for each new task,
whose weights are initialized randomly. Compared to the task-relevant initialization of pretraining,

1Progressive networks can also be generalized in a straightforward manner to have arbitrary network width
per column/layer, to accommodate varying degrees of task difficulty, or to compile lateral connections from
multiple, independent networks in an ensemble setting. Biases are omitted for clarity.

2

37

Progressive Neural Networks: advantages

Accuracy. Progressive networks are immune
to catastrophic forgetting by design.

Knowledge reuse. The addition of new
capacity alongside pretrained networks gives
these models the flexibility to both reuse old
computations and learn new ones.

... what about its disadvantages?

Image from ”Progressive Neural Networks” (PNN) by
Rusu et. al. (2016).

of tasks is novel. Second, we extensively evaluate the model in complex reinforcement learning
domains. In the process, we also evaluate alternative approaches to transfer (such as finetuning) within
the RL domain. In particular, we show that progressive networks provide comparable (if not slightly
better) transfer performance to traditional finetuning, but without the destructive consequences.
Finally, we develop a novel analysis based on Fisher Information and perturbation which allows us to
analyse in detail how and where transfer occurs across tasks.

2 Progressive Networks

Continual learning is a long-standing goal of machine learning, where agents not only learn (and
remember) a series of tasks experienced in sequence, but also have the ability to transfer knowledge
from previous tasks to improve convergence speed [20]. Progressive networks integrate these
desiderata directly into the model architecture: catastrophic forgetting is prevented by instantiating
a new neural network (a column) for each task being solved, while transfer is enabled via lateral
connections to features of previously learned columns. The scalability of this approach is addressed
at the end of this section.

A progressive network starts with a single column: a deep neural network having L layers with
hidden activations h(1)

i 2 Rni , with ni the number of units at layer i  L, and parameters ⇥(1)

trained to convergence. When switching to a second task, the parameters ⇥(1) are “frozen” and a new
column with parameters ⇥(2) is instantiated (with random initialization), where layer h(2)

i receives
input from both h(2)

i�1 and h(1)
i�1 via lateral connections. This generalizes to K tasks as follows: 1:

h(k)
i = f

0

@W (k)
i h(k)

i�1 +
X

j<k

U (k:j)
i h(j)

i�1

1

A , (1)

where W (k)
i 2 Rni⇥ni�1 is the weight matrix of layer i of column k, U (k:j)

i 2 Rni⇥nj are the lateral
connections from layer i� 1 of column j, to layer i of column k and h0 is the network input. f is
an element-wise non-linearity: we use f(x) = max(0, x) for all intermediate layers. A progressive
network with K = 3 is shown in Figure 1.

output2 output3output1

input

h(2)
2 h(3)

2h(1)
2

h(1)
1 h(2)

1 h(3)
1

a a

a a

Figure 1: Depiction of a three column progressive network. The first two columns on the left (dashed arrows)
were trained on task 1 and 2 respectively. The grey box labelled a represent the adapter layers (see text). A third
column is added for the final task having access to all previously learned features.

These modelling decisions are informed by our desire to: (1) solve K independent tasks at the end of
training; (2) accelerate learning via transfer when possible; and (3) avoid catastrophic forgetting.

In the standard pretrain-and-finetune paradigm, there is often an implicit assumption of “overlap”
between the tasks. Finetuning is efficient in this setting, as parameters need only be adjusted
slightly to the target domain, and often only the top layer is retrained [23]. In contrast, we make
no assumptions about the relationship between tasks, which may in practice be orthogonal or even
adversarial. While the finetuning stage could potentially unlearn these features, this may prove
difficult. Progressive networks side-step this issue by allocating a new column for each new task,
whose weights are initialized randomly. Compared to the task-relevant initialization of pretraining,

1Progressive networks can also be generalized in a straightforward manner to have arbitrary network width
per column/layer, to accommodate varying degrees of task difficulty, or to compile lateral connections from
multiple, independent networks in an ensemble setting. Biases are omitted for clarity.

2

38

Progressive Neural Networks: disadvantages (1)

Not scalable. The number of parameters
grow with the number of tasks.

• Huge memory requirements :(
• There is an intrinsic bound on the
number of tasks that can be learned :(

Image from ”Progressive Neural Networks” (PNN) by
Rusu et. al. (2016).

of tasks is novel. Second, we extensively evaluate the model in complex reinforcement learning
domains. In the process, we also evaluate alternative approaches to transfer (such as finetuning) within
the RL domain. In particular, we show that progressive networks provide comparable (if not slightly
better) transfer performance to traditional finetuning, but without the destructive consequences.
Finally, we develop a novel analysis based on Fisher Information and perturbation which allows us to
analyse in detail how and where transfer occurs across tasks.

2 Progressive Networks

Continual learning is a long-standing goal of machine learning, where agents not only learn (and
remember) a series of tasks experienced in sequence, but also have the ability to transfer knowledge
from previous tasks to improve convergence speed [20]. Progressive networks integrate these
desiderata directly into the model architecture: catastrophic forgetting is prevented by instantiating
a new neural network (a column) for each task being solved, while transfer is enabled via lateral
connections to features of previously learned columns. The scalability of this approach is addressed
at the end of this section.

A progressive network starts with a single column: a deep neural network having L layers with
hidden activations h(1)

i 2 Rni , with ni the number of units at layer i  L, and parameters ⇥(1)

trained to convergence. When switching to a second task, the parameters ⇥(1) are “frozen” and a new
column with parameters ⇥(2) is instantiated (with random initialization), where layer h(2)

i receives
input from both h(2)

i�1 and h(1)
i�1 via lateral connections. This generalizes to K tasks as follows: 1:

h(k)
i = f

0

@W (k)
i h(k)

i�1 +
X

j<k

U (k:j)
i h(j)

i�1

1

A , (1)

where W (k)
i 2 Rni⇥ni�1 is the weight matrix of layer i of column k, U (k:j)

i 2 Rni⇥nj are the lateral
connections from layer i� 1 of column j, to layer i of column k and h0 is the network input. f is
an element-wise non-linearity: we use f(x) = max(0, x) for all intermediate layers. A progressive
network with K = 3 is shown in Figure 1.

output2 output3output1

input

h(2)
2 h(3)

2h(1)
2

h(1)
1 h(2)

1 h(3)
1

a a

a a

Figure 1: Depiction of a three column progressive network. The first two columns on the left (dashed arrows)
were trained on task 1 and 2 respectively. The grey box labelled a represent the adapter layers (see text). A third
column is added for the final task having access to all previously learned features.

These modelling decisions are informed by our desire to: (1) solve K independent tasks at the end of
training; (2) accelerate learning via transfer when possible; and (3) avoid catastrophic forgetting.

In the standard pretrain-and-finetune paradigm, there is often an implicit assumption of “overlap”
between the tasks. Finetuning is efficient in this setting, as parameters need only be adjusted
slightly to the target domain, and often only the top layer is retrained [23]. In contrast, we make
no assumptions about the relationship between tasks, which may in practice be orthogonal or even
adversarial. While the finetuning stage could potentially unlearn these features, this may prove
difficult. Progressive networks side-step this issue by allocating a new column for each new task,
whose weights are initialized randomly. Compared to the task-relevant initialization of pretraining,

1Progressive networks can also be generalized in a straightforward manner to have arbitrary network width
per column/layer, to accommodate varying degrees of task difficulty, or to compile lateral connections from
multiple, independent networks in an ensemble setting. Biases are omitted for clarity.

2

39

Progressive Neural Networks: disadvantages (2)

Not suitable for Class-IL. Choosing which
column to use for inference requires
knowledge of the task label, which is
allowed only in the Task-IL scenario.

Image from ”Progressive Neural Networks” (PNN) by
Rusu et. al. (2016).

of tasks is novel. Second, we extensively evaluate the model in complex reinforcement learning
domains. In the process, we also evaluate alternative approaches to transfer (such as finetuning) within
the RL domain. In particular, we show that progressive networks provide comparable (if not slightly
better) transfer performance to traditional finetuning, but without the destructive consequences.
Finally, we develop a novel analysis based on Fisher Information and perturbation which allows us to
analyse in detail how and where transfer occurs across tasks.

2 Progressive Networks

Continual learning is a long-standing goal of machine learning, where agents not only learn (and
remember) a series of tasks experienced in sequence, but also have the ability to transfer knowledge
from previous tasks to improve convergence speed [20]. Progressive networks integrate these
desiderata directly into the model architecture: catastrophic forgetting is prevented by instantiating
a new neural network (a column) for each task being solved, while transfer is enabled via lateral
connections to features of previously learned columns. The scalability of this approach is addressed
at the end of this section.

A progressive network starts with a single column: a deep neural network having L layers with
hidden activations h(1)

i 2 Rni , with ni the number of units at layer i  L, and parameters ⇥(1)

trained to convergence. When switching to a second task, the parameters ⇥(1) are “frozen” and a new
column with parameters ⇥(2) is instantiated (with random initialization), where layer h(2)

i receives
input from both h(2)

i�1 and h(1)
i�1 via lateral connections. This generalizes to K tasks as follows: 1:

h(k)
i = f

0

@W (k)
i h(k)

i�1 +
X

j<k

U (k:j)
i h(j)

i�1

1

A , (1)

where W (k)
i 2 Rni⇥ni�1 is the weight matrix of layer i of column k, U (k:j)

i 2 Rni⇥nj are the lateral
connections from layer i� 1 of column j, to layer i of column k and h0 is the network input. f is
an element-wise non-linearity: we use f(x) = max(0, x) for all intermediate layers. A progressive
network with K = 3 is shown in Figure 1.

output2 output3output1

input

h(2)
2 h(3)

2h(1)
2

h(1)
1 h(2)

1 h(3)
1

a a

a a

Figure 1: Depiction of a three column progressive network. The first two columns on the left (dashed arrows)
were trained on task 1 and 2 respectively. The grey box labelled a represent the adapter layers (see text). A third
column is added for the final task having access to all previously learned features.

These modelling decisions are informed by our desire to: (1) solve K independent tasks at the end of
training; (2) accelerate learning via transfer when possible; and (3) avoid catastrophic forgetting.

In the standard pretrain-and-finetune paradigm, there is often an implicit assumption of “overlap”
between the tasks. Finetuning is efficient in this setting, as parameters need only be adjusted
slightly to the target domain, and often only the top layer is retrained [23]. In contrast, we make
no assumptions about the relationship between tasks, which may in practice be orthogonal or even
adversarial. While the finetuning stage could potentially unlearn these features, this may prove
difficult. Progressive networks side-step this issue by allocating a new column for each new task,
whose weights are initialized randomly. Compared to the task-relevant initialization of pretraining,

1Progressive networks can also be generalized in a straightforward manner to have arbitrary network width
per column/layer, to accommodate varying degrees of task difficulty, or to compile lateral connections from
multiple, independent networks in an ensemble setting. Biases are omitted for clarity.

2

40

Solutions

Addressing the scalability issue. The authors of PNN observed that only a
fraction of the new capacity is actually utilized, and that this trend increases with
more columns.

Countermeasures. Adding fewer layers or less capacity, by pruning, or by online
compression during learning. Some examples:

• PackNet (next slide)
• PathNet
• Piggyback
• HAT (Hard Attention to the Task)

41

PackNet

PackNet by Mallya et. al. exploit redundancies in large deep networks to free up
parameters that can then be employed to learn new tasks.

Iterative pruning and Network re-training. PackNet sequentially packs multiple
tasks into a single network with minimal drop in performance and storage
overhead.

(a) Initial filter for Task I (b) Final filter for Task I (c) Initial filter for Task II (d) Final filter for Task II (e) Initial filter for Task III

60% pruning + re-training 33% pruning + re-trainingtraining training

Figure 1: Illustration of the evolution of a 5×5 filter with steps of training. Initial training of the network for Task I learns a dense filter as

illustrated in (a). After pruning by 60% (15/25) and re-training, we obtain a sparse filter for Task I, as depicted in (b), where white circles

denote 0 valued weights. Weights retained for Task I are kept fixed for the remainder of the method, and are not eligible for further pruning.

We allow the pruned weights to be updated for Task II, leading to filter (c), which shares weights learned for Task I. Another round of

pruning by 33% (5/15) and re-training leads to filter (d), which is the filter used for evaluating on task II (Note that weights for Task I, in

gray, are not considered for pruning). Hereafter, weights for Task II, depicted in orange, are kept fixed. This process is completed until

desired, or we run out of pruned weights, as shown in filter (e). The final filter (e) for task III shares weights learned for tasks I and II. At test

time, appropriate masks are applied depending on the selected task so as to replicate filters learned for the respective tasks.

work for multiple tasks sequentially. When adding a new
task, LwF preserves responses of the network on older tasks
by using a distillation loss [10], where response targets are
computed using data from the current task. As a result, LwF
does not require the storage of older training data, however,
this very strategy can cause issues if the data for the new
task belongs to a distribution different from that of prior
tasks. As more dissimilar tasks are added to the network, the
performance on the prior tasks degrades rapidly [18]. EWC
tries to minimize the change in weights that are important to
previous tasks through the use of a quadratic constraint that
tries to ensure that they do not stray too far from their initial
values. Similar to LwF and EWC, we do not require the
storage of older data. Like EWC, we want to avoid changing
weights that are important to the prior tasks. We, however,
do not use a soft constraint, but employ network pruning
techniques to identify the most important parameters, as ex-
plained shortly. In contrast to these prior works, adding even
a very unrelated new task using our method does not change
performance on older tasks at all.

As neural networks have become deeper and larger, a
number of works have emerged aiming to reduce the size of
trained models, as well as the computation required for in-
ference, either by reducing the numerical precision required
for storing the network weights [5, 6, 12, 23], or by pruning
unimportant network weights [7, 8, 17, 19, 20]. Our key
idea is to use network pruning methods to free up parame-
ters in the network, and then use these parameters to learn
a new task. We adopt the simple weight-magnitude-based
pruning method introduced in [7, 8] as it is able to prune
over 50% of the parameters of the initial network. As we
will discuss in Section 5.5, we also experimented with the
filter-based pruning of [20], obtaining limited success due

to the inability to prune aggressively. Our work is related to
the very recent method proposed by Han et al. [7], which
shows that sparsifying and retraining weights of a network
serves as a form of regularization and improves performance
on the same task. In contrast, we use iterative pruning and
re-training to add multiple diverse tasks.

It is possible to limit performance loss on older tasks if
one allows the network to grow as new tasks are added. One
approach, called progressive neural networks [26], replicates
the network architecture for every new dataset, with each new
layer augmented with lateral connections to corresponding
older layers. The weights of the new layers are optimized,
while keeping the weights of the old layers frozen. The
initial networks are thus unchanged, while the new layers
are able to re-use representations from the older tasks. One
unavoidable drawback of this approach is that the size of the
full network keeps increasing with the number of added tasks.
The overhead per dataset added for our method is lower than
in [26] as we only store one binary parameter selection mask
per task, which can further be combined across tasks, as
explained in the next section. Another recent idea, called
PathNet [3], uses evolutionary strategies to select pathways
through the network. They too, freeze older pathways while
allowing newly introduced tasks to re-use older neurons. At
a high hevel, our method aims at achieving similar behavior,
but without resorting to computationally intensive search
over architectures or pathways.

To our knowledge, our work presents the most exten-
sive set of experiments on full-scale real image datasets and
state-of-the-art architectures to date. Most existing work
on transfer and multi-task learning, like [3, 14, 16, 26], per-
formed validation on small-image datasets (MNIST, CIFAR-
10) or synthetic reinforcement learning environments (Atari,

7766

Image from ”PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning” by Mallya et. al.
42

Regularization approaches

Regularization approaches

Regularization approaches add explicit regularization terms in the loss
function to balance the old and new tasks.

They apply weight sharing across tasks and do not instantiate additional
parameters.

• Reduced memory footprint :)
• An example from previous slides: EWC

However, the auxiliary regularization objective usually requires to store a frozen
copy of the old model for reference.

43

Regularization approaches (2)

Depending on the target of
regularization, such methods
can be divided into two
sub-directions.

• Weight regularization
• Function regularization

Image from ”A Comprehensive Survey of
Continual Learning: Theory, Method and
Application” by Wang et. al. (2023).

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

Fig. 4. Regularization-based approach. This direction is characterized
by adding explicit regularization terms to mimic the parameters (weight
regularization) or behaviors (function regularization) of the old model.

trade-off [245], [250], [263], [384], [442]. IMM [250] is an
early attempt that incrementally matches the moment of the
posterior distributions of old and new tasks, i.e., a weighted
average of their solutions. ResCL [245] extends this idea
with a learnable combination coefficient. P&C [384] learns
each task individually with an additional network, and then
distills it back to the old model with a generalized version of
EWC. AFEC [442] introduces a forgetting rate to eliminate
the potential negative transfer from the original posterior
p(✓|D1:k�1) in Eq. 8, and derives quadratic terms to penalize
differences of the network parameters ✓ with both the old
and new task solutions. To reliably average the old and
new task solutions, a linear connector [263] is constructed
by constraining them on a linear low-error path.

Other forms of regularization that target the network
itself also belong to this sub-direction. As discussed before,
online VI of the posterior distribution can serve as an
implicit regularization of parameter changes, such as VCL
[321], [412], NVCL [422], CLAW [7], GVCL [284], KCL [92]
and VAR-GPs [209]. Instead of consolidating parameters,
NPC [328] estimates the importance of each neuron and
selectively reduces its learning rate. UCL [9] and AGS-CL
[199] freeze the parameters connecting the important neu-
rons, equivalent to a hard version of weight regularization.

The second is function regularization, which targets the
intermediate or final output of the prediction function. This
strategy typically employs the previously-learned model as
the teacher and the currently-trained model as the student,
while implementing knowledge distillation (KD) [142] to
mitigate catastrophic forgetting. Ideally, the target of KD
should be all old training samples, which are unavailable
in continual learning. The alternatives can be new training
samples [94], [183], [260], [364], a small fraction of old
training samples [54], [103], [167], [367], external unlabeled
data [246], generated data [464], [501], etc., suffering from
different degrees of distribution shift.

As a pioneer work, LwF [260] and LwF.MC [367] learn
new training samples while using their predictions from the
output head of the old tasks to compute the distillation loss.
LwM [94] exploits the attention maps of new training sam-
ples for KD. EBLL [364] learns task-specific autoencoders
and prevents changes in feature reconstruction. GD [246]
further distills knowledge on the large stream of unlabeled
data available in the wild. When old training samples are
faithfully recovered, the potential of function regularization

can be largely released. Thus, function regularization often
collaborates with replaying a few old training samples, such
as iCaRL [367], EEIL [54], LUCIR [167], PODNet [103], SS-IL
[10], DER [47], etc., discussed latter in Sec. 4.2. On the other
hand, sequential Bayesian inference over function space can
be seen as a form of function regularization, which generally
requires storing some old training samples (called “coreset”
in literature), such as FRCL [419], FROMP [329] and S-
FSVI [380]. For conditional generation, the generated data of
previously-learned conditions and their output values are
regularized to be consistent between the old and new mod-
els, such as MeRGANs [464], DRI [452] and LifelongGAN
[501].

4.2 Replay-based Approach

We group the methods for approximating and recovering
old data distributions into this direction (see Fig. 5). De-
pending on the content of replay, these methods can be
further divided into three sub-directions, each with its own
targets and challenges.

The first is experience replay, which typically stores a
few old training samples within a small memory buffer. Due
to the extremely limited storage space, the key challenges
consist of how to construct and how to exploit the memory
buffer. As for construction, the preserved old training sam-
ples should be carefully selected, compressed, augmented,
and updated, in order to recover adaptively the past in-
formation. Earlier work adopts fixed principles for sample
selection. For example, Reservoir Sampling [68], [371], [432]
randomly preserves a fixed number of old training samples
obtained from each training batch. Ring Buffer [285] further
ensures an equal number of old training samples per class.
Mean-of-Feature [367] selects an equal number of old train-
ing samples that are closest to the feature mean of each class.
There are many other fixed principles, such as k-means
[68], plane distance [371] and entropy [371], but all perform
mediocrely [68], [371]. More advanced strategies are typi-
cally gradient-based or optimizable, by maximizing such as
the sample diversity in terms of parameter gradients (GSS
[16]), performance of corresponding tasks with cardinality
constraints (CCBO [41]), mini-batch gradient similarity and
cross-batch gradient diversity (OCS [492]), ability of opti-
mizing latent decision boundaries (ASER [393]), diversity of
robustness against perturbations (RM [27]), similarity to the
gradients of old training samples with respect to the current
parameters (GCR [420]), etc.

To improve storage efficiency, AQM [49] performs on-
line continual compression based on a VQ-VAE framework
[426] and saves compressed data for replay. MRDC [444]
formulates experience replay with data compression as
determinantal point processes (DPPs) [236], and derives a
computationally efficient way for online determination of
the optimal compression rate. RM [27] adopts conventional
and label mixing-based strategies of data augmentation to
enhance the diversity of old training samples. RAR [239]
synthesizes adversarial samples near the forgetting bound-
ary and performs MixUp [505] for data augmentation. The
auxiliary information with low storage cost, such as class
statistics (IL2M [31], SNCL [140]) and attention maps (RRR
[111], EPR [382]), can be further incorporated to maintain

44

Weight regularization

Weight regularization approaches
selectively regularize the variation of
network parameters.

e.g., through a quadratic penalty
that penalizes the variation of each
parameter depending on its
importance to performing the old
tasks.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

Fig. 4. Regularization-based approach. This direction is characterized
by adding explicit regularization terms to mimic the parameters (weight
regularization) or behaviors (function regularization) of the old model.

trade-off [245], [250], [263], [384], [442]. IMM [250] is an
early attempt that incrementally matches the moment of the
posterior distributions of old and new tasks, i.e., a weighted
average of their solutions. ResCL [245] extends this idea
with a learnable combination coefficient. P&C [384] learns
each task individually with an additional network, and then
distills it back to the old model with a generalized version of
EWC. AFEC [442] introduces a forgetting rate to eliminate
the potential negative transfer from the original posterior
p(✓|D1:k�1) in Eq. 8, and derives quadratic terms to penalize
differences of the network parameters ✓ with both the old
and new task solutions. To reliably average the old and
new task solutions, a linear connector [263] is constructed
by constraining them on a linear low-error path.

Other forms of regularization that target the network
itself also belong to this sub-direction. As discussed before,
online VI of the posterior distribution can serve as an
implicit regularization of parameter changes, such as VCL
[321], [412], NVCL [422], CLAW [7], GVCL [284], KCL [92]
and VAR-GPs [209]. Instead of consolidating parameters,
NPC [328] estimates the importance of each neuron and
selectively reduces its learning rate. UCL [9] and AGS-CL
[199] freeze the parameters connecting the important neu-
rons, equivalent to a hard version of weight regularization.

The second is function regularization, which targets the
intermediate or final output of the prediction function. This
strategy typically employs the previously-learned model as
the teacher and the currently-trained model as the student,
while implementing knowledge distillation (KD) [142] to
mitigate catastrophic forgetting. Ideally, the target of KD
should be all old training samples, which are unavailable
in continual learning. The alternatives can be new training
samples [94], [183], [260], [364], a small fraction of old
training samples [54], [103], [167], [367], external unlabeled
data [246], generated data [464], [501], etc., suffering from
different degrees of distribution shift.

As a pioneer work, LwF [260] and LwF.MC [367] learn
new training samples while using their predictions from the
output head of the old tasks to compute the distillation loss.
LwM [94] exploits the attention maps of new training sam-
ples for KD. EBLL [364] learns task-specific autoencoders
and prevents changes in feature reconstruction. GD [246]
further distills knowledge on the large stream of unlabeled
data available in the wild. When old training samples are
faithfully recovered, the potential of function regularization

can be largely released. Thus, function regularization often
collaborates with replaying a few old training samples, such
as iCaRL [367], EEIL [54], LUCIR [167], PODNet [103], SS-IL
[10], DER [47], etc., discussed latter in Sec. 4.2. On the other
hand, sequential Bayesian inference over function space can
be seen as a form of function regularization, which generally
requires storing some old training samples (called “coreset”
in literature), such as FRCL [419], FROMP [329] and S-
FSVI [380]. For conditional generation, the generated data of
previously-learned conditions and their output values are
regularized to be consistent between the old and new mod-
els, such as MeRGANs [464], DRI [452] and LifelongGAN
[501].

4.2 Replay-based Approach

We group the methods for approximating and recovering
old data distributions into this direction (see Fig. 5). De-
pending on the content of replay, these methods can be
further divided into three sub-directions, each with its own
targets and challenges.

The first is experience replay, which typically stores a
few old training samples within a small memory buffer. Due
to the extremely limited storage space, the key challenges
consist of how to construct and how to exploit the memory
buffer. As for construction, the preserved old training sam-
ples should be carefully selected, compressed, augmented,
and updated, in order to recover adaptively the past in-
formation. Earlier work adopts fixed principles for sample
selection. For example, Reservoir Sampling [68], [371], [432]
randomly preserves a fixed number of old training samples
obtained from each training batch. Ring Buffer [285] further
ensures an equal number of old training samples per class.
Mean-of-Feature [367] selects an equal number of old train-
ing samples that are closest to the feature mean of each class.
There are many other fixed principles, such as k-means
[68], plane distance [371] and entropy [371], but all perform
mediocrely [68], [371]. More advanced strategies are typi-
cally gradient-based or optimizable, by maximizing such as
the sample diversity in terms of parameter gradients (GSS
[16]), performance of corresponding tasks with cardinality
constraints (CCBO [41]), mini-batch gradient similarity and
cross-batch gradient diversity (OCS [492]), ability of opti-
mizing latent decision boundaries (ASER [393]), diversity of
robustness against perturbations (RM [27]), similarity to the
gradients of old training samples with respect to the current
parameters (GCR [420]), etc.

To improve storage efficiency, AQM [49] performs on-
line continual compression based on a VQ-VAE framework
[426] and saves compressed data for replay. MRDC [444]
formulates experience replay with data compression as
determinantal point processes (DPPs) [236], and derives a
computationally efficient way for online determination of
the optimal compression rate. RM [27] adopts conventional
and label mixing-based strategies of data augmentation to
enhance the diversity of old training samples. RAR [239]
synthesizes adversarial samples near the forgetting bound-
ary and performs MixUp [505] for data augmentation. The
auxiliary information with low storage cost, such as class
statistics (IL2M [31], SNCL [140]) and attention maps (RRR
[111], EPR [382]), can be further incorporated to maintain

Some examples: EWC, Synaptic Intelligence (SI), MAS, RWalk, etc.

45

Function regularization

Function regularization approaches
target the intermediate or final
output of the prediction function.

Teacher-student paradigm. They
typically employ the
previously-learned model as the
teacher and the currently-trained
model as the student.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

Fig. 4. Regularization-based approach. This direction is characterized
by adding explicit regularization terms to mimic the parameters (weight
regularization) or behaviors (function regularization) of the old model.

trade-off [245], [250], [263], [384], [442]. IMM [250] is an
early attempt that incrementally matches the moment of the
posterior distributions of old and new tasks, i.e., a weighted
average of their solutions. ResCL [245] extends this idea
with a learnable combination coefficient. P&C [384] learns
each task individually with an additional network, and then
distills it back to the old model with a generalized version of
EWC. AFEC [442] introduces a forgetting rate to eliminate
the potential negative transfer from the original posterior
p(✓|D1:k�1) in Eq. 8, and derives quadratic terms to penalize
differences of the network parameters ✓ with both the old
and new task solutions. To reliably average the old and
new task solutions, a linear connector [263] is constructed
by constraining them on a linear low-error path.

Other forms of regularization that target the network
itself also belong to this sub-direction. As discussed before,
online VI of the posterior distribution can serve as an
implicit regularization of parameter changes, such as VCL
[321], [412], NVCL [422], CLAW [7], GVCL [284], KCL [92]
and VAR-GPs [209]. Instead of consolidating parameters,
NPC [328] estimates the importance of each neuron and
selectively reduces its learning rate. UCL [9] and AGS-CL
[199] freeze the parameters connecting the important neu-
rons, equivalent to a hard version of weight regularization.

The second is function regularization, which targets the
intermediate or final output of the prediction function. This
strategy typically employs the previously-learned model as
the teacher and the currently-trained model as the student,
while implementing knowledge distillation (KD) [142] to
mitigate catastrophic forgetting. Ideally, the target of KD
should be all old training samples, which are unavailable
in continual learning. The alternatives can be new training
samples [94], [183], [260], [364], a small fraction of old
training samples [54], [103], [167], [367], external unlabeled
data [246], generated data [464], [501], etc., suffering from
different degrees of distribution shift.

As a pioneer work, LwF [260] and LwF.MC [367] learn
new training samples while using their predictions from the
output head of the old tasks to compute the distillation loss.
LwM [94] exploits the attention maps of new training sam-
ples for KD. EBLL [364] learns task-specific autoencoders
and prevents changes in feature reconstruction. GD [246]
further distills knowledge on the large stream of unlabeled
data available in the wild. When old training samples are
faithfully recovered, the potential of function regularization

can be largely released. Thus, function regularization often
collaborates with replaying a few old training samples, such
as iCaRL [367], EEIL [54], LUCIR [167], PODNet [103], SS-IL
[10], DER [47], etc., discussed latter in Sec. 4.2. On the other
hand, sequential Bayesian inference over function space can
be seen as a form of function regularization, which generally
requires storing some old training samples (called “coreset”
in literature), such as FRCL [419], FROMP [329] and S-
FSVI [380]. For conditional generation, the generated data of
previously-learned conditions and their output values are
regularized to be consistent between the old and new mod-
els, such as MeRGANs [464], DRI [452] and LifelongGAN
[501].

4.2 Replay-based Approach

We group the methods for approximating and recovering
old data distributions into this direction (see Fig. 5). De-
pending on the content of replay, these methods can be
further divided into three sub-directions, each with its own
targets and challenges.

The first is experience replay, which typically stores a
few old training samples within a small memory buffer. Due
to the extremely limited storage space, the key challenges
consist of how to construct and how to exploit the memory
buffer. As for construction, the preserved old training sam-
ples should be carefully selected, compressed, augmented,
and updated, in order to recover adaptively the past in-
formation. Earlier work adopts fixed principles for sample
selection. For example, Reservoir Sampling [68], [371], [432]
randomly preserves a fixed number of old training samples
obtained from each training batch. Ring Buffer [285] further
ensures an equal number of old training samples per class.
Mean-of-Feature [367] selects an equal number of old train-
ing samples that are closest to the feature mean of each class.
There are many other fixed principles, such as k-means
[68], plane distance [371] and entropy [371], but all perform
mediocrely [68], [371]. More advanced strategies are typi-
cally gradient-based or optimizable, by maximizing such as
the sample diversity in terms of parameter gradients (GSS
[16]), performance of corresponding tasks with cardinality
constraints (CCBO [41]), mini-batch gradient similarity and
cross-batch gradient diversity (OCS [492]), ability of opti-
mizing latent decision boundaries (ASER [393]), diversity of
robustness against perturbations (RM [27]), similarity to the
gradients of old training samples with respect to the current
parameters (GCR [420]), etc.

To improve storage efficiency, AQM [49] performs on-
line continual compression based on a VQ-VAE framework
[426] and saves compressed data for replay. MRDC [444]
formulates experience replay with data compression as
determinantal point processes (DPPs) [236], and derives a
computationally efficient way for online determination of
the optimal compression rate. RM [27] adopts conventional
and label mixing-based strategies of data augmentation to
enhance the diversity of old training samples. RAR [239]
synthesizes adversarial samples near the forgetting bound-
ary and performs MixUp [505] for data augmentation. The
auxiliary information with low storage cost, such as class
statistics (IL2M [31], SNCL [140]) and attention maps (RRR
[111], EPR [382]), can be further incorporated to maintain

Some examples: Learning without Forgetting (LwF, next slides).

46

Learning without Forgetting (LwF)

Goal. To learn a network that can
perform well on both old tasks and new
tasks when only new-task data is
present.

LwF in few words

Applying Knowledge Distillation (KD)
between the teacher (the old network,
with frozen parameters) and the student
(the current one, learning the current
task).

3

random initialize + train
fine-tune
unchanged

…

…

new task
ground truth

new task
image

Input: Target:
(b) Fine-tuning

(d) Joint Training

…

…

new task
ground truth

old tasks’
ground truthimage for

each task

Input: Target:

(c) Feature Extraction

new task
ground truth

…

…

new task
image

Input: Target:

(e) Learning without Forgetting

…

…

new task
ground truth

new task
image

model (a)’s
response for

old tasks

Input: Target:

(a) Original Model

(old task 𝑚)
…(test image)

… (old task 1)

𝜃𝑠 𝜃𝑜

Fig. 2. Illustration for our method (e) and methods we compare to (b-d). Images and labels used in training are shown. Data for different tasks are
used in alternation in joint training.

al. [17] propose Deep Block-Modular Neural Networks for
fully-connected neural networks, and Rusu et al. [18] pro-
pose Progressive Neural Networks for reinforcement learn-
ing. Parameters for the original network are untouched, and
newly added nodes are fully connected to the layer beneath
them. These methods has the downside of substantially
expanding the number of parameters in the network, and
can underperform [17] both fine-tuning and feature extrac-
tion if insufficient training data is available to learn the
new parameters, since they require a substantial number of
parameters to be trained from scratch. We experiment with
expanding the fully connected layers of original network
but find that the expansion does not provide an improve-
ment on our original approach.

2.2 Topically relevant methods
Our work also relates to methods that transfer knowledge
between networks. Hinton et al. [11] propose Knowledge
Distillation, where knowledge is transferred from a large
network or a network assembly to a smaller network for
efficient deployment. The smaller network is trained using a
modified cross-entropy loss (further described in Sec. 3) that
encourages both large and small responses of the original
and new network to be similar. Romero et al. [19] builds
on this work to transfer to a deeper network by applying
extra guidance on the middle layer. Chen et al. [20] proposes
the Net2Net method that immediately generates a deeper,
wider network that is functionally equivalent to an exist-
ing one. This technique can quickly initialize networks for

faster hyper-parameter exploration. These methods aim to
produce a differently structured network that approximates
the original network, while we aim to find new parameters
for the original network structure (✓s, ✓o) that approximate
the original outputs while tuning shared parameters ✓s for
new tasks.

Feature extraction and fine-tuning are special cases of
Domain Adaptation (when old and new tasks are the same)
or Transfer Learning (different tasks). These are different
from multitask learning in that tasks are not simultaneously
optimized. Transfer Learning uses knowledge from one
task to help another, as surveyed by Pan et al. [21]. The
Deep Adaption Network by Long et al. [22] matches the
RKHS embedding of the deep representation of both source
and target tasks to reduce domain bias. Another similar
domain adaptation method is by Tzeng et al. [23], which
encourages the shared deep representation to be indistin-
guishable across domains. This method also uses knowledge
distillation, but to help train the new domain instead of
preserving the old task. Domain adaptation and transfer
learning require that at least unlabeled data is present for
both task domains. In contrast, we are interested in the
case when training data for the original tasks (i.e. source
domains) are not available.

Methods that integrate knowledge over time, e.g. Life-
long Learning [24] and Never Ending Learning [25], are also
related. Lifelong learning focuses on flexibly adding new
tasks while transferring knowledge between tasks. Never
Ending Learning focuses on building diverse knowledge

47

Learning without Forgetting (LwF)

Step 1: Given a new-task image, compute a forward pass through the network
appointed at the end of the previous task (the teacher).

This way, you have an output
(probability), which can be treated as an
additional “pseudo label” for the
new-task data.

Step 2: Train a new network (the
student) only on the examples of the
new task, using both the true labels and
the generated pseudo labels.

3

random initialize + train
fine-tune
unchanged

…

…

new task
ground truth

new task
image

Input: Target:
(b) Fine-tuning

(d) Joint Training

…

…

new task
ground truth

old tasks’
ground truthimage for

each task

Input: Target:

(c) Feature Extraction

new task
ground truth

…

…

new task
image

Input: Target:

(e) Learning without Forgetting

…

…

new task
ground truth

new task
image

model (a)’s
response for

old tasks

Input: Target:

(a) Original Model

(old task 𝑚)
…(test image)

… (old task 1)

𝜃𝑠 𝜃𝑜

Fig. 2. Illustration for our method (e) and methods we compare to (b-d). Images and labels used in training are shown. Data for different tasks are
used in alternation in joint training.

al. [17] propose Deep Block-Modular Neural Networks for
fully-connected neural networks, and Rusu et al. [18] pro-
pose Progressive Neural Networks for reinforcement learn-
ing. Parameters for the original network are untouched, and
newly added nodes are fully connected to the layer beneath
them. These methods has the downside of substantially
expanding the number of parameters in the network, and
can underperform [17] both fine-tuning and feature extrac-
tion if insufficient training data is available to learn the
new parameters, since they require a substantial number of
parameters to be trained from scratch. We experiment with
expanding the fully connected layers of original network
but find that the expansion does not provide an improve-
ment on our original approach.

2.2 Topically relevant methods
Our work also relates to methods that transfer knowledge
between networks. Hinton et al. [11] propose Knowledge
Distillation, where knowledge is transferred from a large
network or a network assembly to a smaller network for
efficient deployment. The smaller network is trained using a
modified cross-entropy loss (further described in Sec. 3) that
encourages both large and small responses of the original
and new network to be similar. Romero et al. [19] builds
on this work to transfer to a deeper network by applying
extra guidance on the middle layer. Chen et al. [20] proposes
the Net2Net method that immediately generates a deeper,
wider network that is functionally equivalent to an exist-
ing one. This technique can quickly initialize networks for

faster hyper-parameter exploration. These methods aim to
produce a differently structured network that approximates
the original network, while we aim to find new parameters
for the original network structure (✓s, ✓o) that approximate
the original outputs while tuning shared parameters ✓s for
new tasks.

Feature extraction and fine-tuning are special cases of
Domain Adaptation (when old and new tasks are the same)
or Transfer Learning (different tasks). These are different
from multitask learning in that tasks are not simultaneously
optimized. Transfer Learning uses knowledge from one
task to help another, as surveyed by Pan et al. [21]. The
Deep Adaption Network by Long et al. [22] matches the
RKHS embedding of the deep representation of both source
and target tasks to reduce domain bias. Another similar
domain adaptation method is by Tzeng et al. [23], which
encourages the shared deep representation to be indistin-
guishable across domains. This method also uses knowledge
distillation, but to help train the new domain instead of
preserving the old task. Domain adaptation and transfer
learning require that at least unlabeled data is present for
both task domains. In contrast, we are interested in the
case when training data for the original tasks (i.e. source
domains) are not available.

Methods that integrate knowledge over time, e.g. Life-
long Learning [24] and Never Ending Learning [25], are also
related. Lifelong learning focuses on flexibly adding new
tasks while transferring knowledge between tasks. Never
Ending Learning focuses on building diverse knowledge

48

Regularization approaches: a summary

Advantages.

• Bounded memory cost
• They can further distills knowledge on the large stream of unlabeled data
that may be available in the wild

Disadvantages.

• Not very effective on long tasks
• Vulnerable to domain shift between tasks

Solution. Provide a few training samples from old tasks (replaying approaches
→).

49

Rehearsal approaches

Rehearsal approaches

Rehearsal approaches store previously
seen examples in a memory buffer and use
them in later iterations.

Experience replay (ER). An old, simple, yet
surprisingly effective baseline for CL.

• Simple and straightforward :)
• Performance proportional to memory
size :(

• It may clash with privacy constraints :(

Principle

• Experience Replay (ER) [5] is a simple method
that hinders catastrophic forgetting by

1. Storing previously encountered examples
in a memory buffer along with their labels

2. Optimizing on both current data and
stored items (replay)

12/06/23 20Knowledge Distillation & Continual Learning

Model

Memory
BufferTr

ai
n

Store

Model

Memory
BufferTr

ai
n Replay

50

Experience replay (ER)

Experience replay (ER) stores a few old
training samples within a small memory
buffer B, with fixed memory capacity.

• e.g., it can contain only 500 examples of
past tasks.

Loss function. Indicating with ` the
cross-entropy loss between the output fθ
and the true labels y, we have that:

LER = E(x,y)∼Dt

[
`(y, fθ(x))

]
+E(x,y)∼B

[
`(y, fθ(x))

]
.

ModelData
Aug.𝒙 𝒙𝒂𝒖𝒈

Memory
Buffer

𝒙𝒂𝒖𝒈𝒙𝒂𝒖𝒈𝒙𝒂𝒖𝒈

store

train

rehearse

𝒙𝒂𝒖𝒈𝒙𝒂𝒖𝒈𝒙𝒂𝒖𝒈

A new item
is sampled

from the stream A random exemplar is discarded
when the Memory Buffer is full

Reservoir

A random exemplar from the most
represented class is discarded
when the Memory Buffer is full

BRS

A random exemplar is discarded when the
Memory Buffer is full, with a probability

given by its recorded loss score.

LARS

Data
Aug.𝒙 Model𝒙𝒂𝒖𝒈

Memory
Buffer

𝒙𝒂𝒖𝒙

train

rehearse

store
Data
Aug.

𝒙𝒂𝒖𝒈𝒙𝒂𝒖𝒈𝒙𝒂𝒖𝒈′

prob.

Model

Data
Aug.

𝒙

Memory
Buffer

store

train

rehearse

𝒙

train

rehearse

store

Data
Aug.

Data
Aug.

𝒙
Memory
Buffer

Model

Reservoir LARS prob.BRS

𝒙 Input
Stream

Memory
Buffer

Cross-
Entropy

Loss

𝒙𝒂𝒖𝒙𝒓

store
examples

store
responses

MSE
Loss

Model

𝒚

𝒙
𝒚

𝒙
𝒚

𝒙
𝒚

𝒙
𝒚

𝒙
𝒚

𝒙
𝒚

𝒙
𝒚

… …

Input
stream

Output
logits

𝒙 Input
Stream

Memory
Buffer

Cross-
Entropy

Loss

store
examples
and labels

store
responses

MSE
and CE
Losses

Model

𝒚

𝒚

𝒙𝒂𝒖
𝒚

𝒙𝒓
𝒚

𝒙𝒂𝒖𝒈𝒙𝒂𝒖𝒈𝒙𝒂𝒖𝒈𝒙𝒂𝒖𝒈

𝒙𝒂𝒖𝒈𝒙𝒂𝒖𝒈𝒙𝒂𝒖𝒈

𝒙𝒂𝒖𝒈
𝒙𝒂𝒖𝒈

𝒙𝒂𝒖𝒈′𝒙𝒂𝒖𝒈′𝒙𝒂𝒖𝒈′

(a) (b)
Fig. 2. Graphical comparison between rehearsal on augmented examples (a)
and Independent Buffer Augmentation (b) (best in color).

to approximate it. Experience Replay addresses this issue
by storing exemplars and labels from previous tasks in a
replay buffer B. During each training step, it merges some of
these items with the current batch: consequently, the network
rehearses past tasks as it learns current data. This amounts to
optimizing the following loss term as a surrogate of Eq. 1:

L0 = E(x,y)⇠Dt

⇥
`(y, f✓(x))

⇤
+ E(x,y)⇠B

⇥
`(y, f✓(x))

⇤
. (2)

This practical solution only introduces two additional hyper-
parameters to f✓, namely the replay buffer size |B| and the
number of elements that we draw from it at each step. In
this work, we initially assume to update the buffer with the
reservoir sampling strategy [30] (see Alg. 1), as proposed
in [14]. This guarantees that each input exemplar has the
same probability |B|/|D| of entering the replay buffer. We
prefer this solution both to herding [2] and the class-wise
FIFO [19] strategies (a.k.a. ring buffer). Unlike reservoir, the
former needs to retain the entire training set of each task.
Conversely, the latter does not exploit the whole memory and
is more likely to overfit (as pointed out in [19]).

IV. TRAINING TRICKS

In this section, we discuss some issues that ER encounters
in the Class-IL setting and propose effective tricks to mitigate
them. On the one hand, Sec. IV-A, IV-D and IV-E describe
improvements to the replay buffer and can, therefore, easily
extend to other rehearsal-based methods. On the other hand,
the tricks described in Sec. IV-B and IV-C are more general
and applicable to any Class-IL method.

A. Independent Buffer Augmentation (IBA)
Data augmentation is an effective strategy for improving

the generalization capabilities of a Deep Network [31]. When
dealing with Continual Learning scenarios, one can apply data
augmentation on the input stream of data (i.e. the examples
shown to the net during each task). However, for a rehearsal
method, replayed exemplars constitute a significant portion
of the overall training input. This could pose a serious risk

of overfitting the memory buffer, which we address through
Independent Buffer Augmentation (IBA): in addition to the
regular augmentation performed on the input stream, we store
examples not augmented in the memory buffer; this way, we
can augment them independently when drawn for later replay.
By so doing, we minimize overfitting on the memory and
introduce additional variety in the rehearsal examples.

While adopting this simple expedient could seem a no-
brainer, its application in literature should not be taken for
granted. As an example, the CL methods implemented in the
codebase of [13]3 and [15]4 store the augmented examples in
the memory buffer and re-use them as-they-are, as illustrated
in Fig. 2(a). On the contrary, we remark that it is much more
beneficial to show the model replay examples that undergo
distinct transformations, as shown in Fig. 2(b).

B. Bias Control (BiC)
Given the sequential nature of the Class-IL setting, the

network’s predictions end up showing bias towards the current
task. Indeed, a single-head classifier is less prone to predicting
classes found in prior tasks than those learned just before
testing. Such bias is linked to the whole model and not
exclusively to its final classification layer: consequently, the
trivial solution of zeroing the latter is not beneficial.

This imbalance problem is analyzed by both Hou et al.
in [18] and Wu et al. in [17]. The former addresses this issue
structurally by devising a specific margin-ranking loss term
aimed keeping representations from different tasks separated.
However, the latter work proposes a much simpler and modular
solution, which we also apply here: the addition of a simple
Bias Correction Layer to the model. This layer consists in a
linear model with two parameters ↵ and � that compensates
the kth output logit ok as follows.

qk =

(
↵ · ok + � if k was trained in the last task
ok otherwise

(3)

Such a layer is applied downstream of the classifier to yield
the final output at test time. Thanks to its small size, it can
be easily trained at the end of each task by leveraging a
limited amount of exemplars. Importantly, while [17] employs
a separate validation set for this purpose, we simply exploit the
same replay buffer we use for rehearsal methods. Parameters ↵
and � are optimized through the cross-entropy loss, as follows:

`BiC = �
X

k

�y=k log[softmax(qk)]. (4)

We agree with the authors of [17] on the effectiveness of
this simple linear model to counter the above-mentioned bias.

C. Exponential LR Decay (ELRD)
Arguably, the best way to preserve previous knowledge

is not to learn anything new. To this aim, we propose to
decrease the learning rate progressively at each iteration; we

3https://github.com/facebookresearch/GradientEpisodicMemory
4https://github.com/rahafaljundi/Gradient-based-Sample-Selection

51

Experience replay (ER)

LER = E(x,y)∼Dt

[
`(y, fθ(x))

]︸ ︷︷ ︸
Current task

loss on a batch from
the current task

+E(x,y)∼B
[
`(y, fθ(x))

]︸ ︷︷ ︸
Memory buffer

loss on a batch sampled
from the memory buffer B

ModelData
Aug.𝒙 𝒙𝒂𝒖𝒈

Memory
Buffer

𝒙𝒂𝒖𝒈𝒙𝒂𝒖𝒈𝒙𝒂𝒖𝒈

store

train

rehearse

𝒙𝒂𝒖𝒈𝒙𝒂𝒖𝒈𝒙𝒂𝒖𝒈

A new item
is sampled

from the stream A random exemplar is discarded
when the Memory Buffer is full

Reservoir

A random exemplar from the most
represented class is discarded
when the Memory Buffer is full

BRS

A random exemplar is discarded when the
Memory Buffer is full, with a probability

given by its recorded loss score.

LARS

Data
Aug.𝒙 Model𝒙𝒂𝒖𝒈

Memory
Buffer

𝒙𝒂𝒖𝒙

train

rehearse

store
Data
Aug.

𝒙𝒂𝒖𝒈𝒙𝒂𝒖𝒈𝒙𝒂𝒖𝒈′

prob.

Model

Data
Aug.

𝒙

Memory
Buffer

store

train

rehearse

𝒙

train

rehearse

store

Data
Aug.

Data
Aug.

𝒙
Memory
Buffer

Model

Reservoir LARS prob.BRS

𝒙 Input
Stream

Memory
Buffer

Cross-
Entropy

Loss

𝒙𝒂𝒖𝒙𝒓

store
examples

store
responses

MSE
Loss

Model

𝒚

𝒙
𝒚

𝒙
𝒚

𝒙
𝒚

𝒙
𝒚

𝒙
𝒚

𝒙
𝒚

𝒙
𝒚

… …

Input
stream

Output
logits

𝒙 Input
Stream

Memory
Buffer

Cross-
Entropy

Loss

store
examples
and labels

store
responses

MSE
and CE
Losses

Model

𝒚

𝒚

𝒙𝒂𝒖
𝒚

𝒙𝒓
𝒚

𝒙𝒂𝒖𝒈𝒙𝒂𝒖𝒈𝒙𝒂𝒖𝒈𝒙𝒂𝒖𝒈

𝒙𝒂𝒖𝒈𝒙𝒂𝒖𝒈𝒙𝒂𝒖𝒈

𝒙𝒂𝒖𝒈
𝒙𝒂𝒖𝒈

𝒙𝒂𝒖𝒈′𝒙𝒂𝒖𝒈′𝒙𝒂𝒖𝒈′

(a) (b)
Fig. 2. Graphical comparison between rehearsal on augmented examples (a)
and Independent Buffer Augmentation (b) (best in color).

to approximate it. Experience Replay addresses this issue
by storing exemplars and labels from previous tasks in a
replay buffer B. During each training step, it merges some of
these items with the current batch: consequently, the network
rehearses past tasks as it learns current data. This amounts to
optimizing the following loss term as a surrogate of Eq. 1:

L0 = E(x,y)⇠Dt

⇥
`(y, f✓(x))

⇤
+ E(x,y)⇠B

⇥
`(y, f✓(x))

⇤
. (2)

This practical solution only introduces two additional hyper-
parameters to f✓, namely the replay buffer size |B| and the
number of elements that we draw from it at each step. In
this work, we initially assume to update the buffer with the
reservoir sampling strategy [30] (see Alg. 1), as proposed
in [14]. This guarantees that each input exemplar has the
same probability |B|/|D| of entering the replay buffer. We
prefer this solution both to herding [2] and the class-wise
FIFO [19] strategies (a.k.a. ring buffer). Unlike reservoir, the
former needs to retain the entire training set of each task.
Conversely, the latter does not exploit the whole memory and
is more likely to overfit (as pointed out in [19]).

IV. TRAINING TRICKS

In this section, we discuss some issues that ER encounters
in the Class-IL setting and propose effective tricks to mitigate
them. On the one hand, Sec. IV-A, IV-D and IV-E describe
improvements to the replay buffer and can, therefore, easily
extend to other rehearsal-based methods. On the other hand,
the tricks described in Sec. IV-B and IV-C are more general
and applicable to any Class-IL method.

A. Independent Buffer Augmentation (IBA)
Data augmentation is an effective strategy for improving

the generalization capabilities of a Deep Network [31]. When
dealing with Continual Learning scenarios, one can apply data
augmentation on the input stream of data (i.e. the examples
shown to the net during each task). However, for a rehearsal
method, replayed exemplars constitute a significant portion
of the overall training input. This could pose a serious risk

of overfitting the memory buffer, which we address through
Independent Buffer Augmentation (IBA): in addition to the
regular augmentation performed on the input stream, we store
examples not augmented in the memory buffer; this way, we
can augment them independently when drawn for later replay.
By so doing, we minimize overfitting on the memory and
introduce additional variety in the rehearsal examples.

While adopting this simple expedient could seem a no-
brainer, its application in literature should not be taken for
granted. As an example, the CL methods implemented in the
codebase of [13]3 and [15]4 store the augmented examples in
the memory buffer and re-use them as-they-are, as illustrated
in Fig. 2(a). On the contrary, we remark that it is much more
beneficial to show the model replay examples that undergo
distinct transformations, as shown in Fig. 2(b).

B. Bias Control (BiC)
Given the sequential nature of the Class-IL setting, the

network’s predictions end up showing bias towards the current
task. Indeed, a single-head classifier is less prone to predicting
classes found in prior tasks than those learned just before
testing. Such bias is linked to the whole model and not
exclusively to its final classification layer: consequently, the
trivial solution of zeroing the latter is not beneficial.

This imbalance problem is analyzed by both Hou et al.
in [18] and Wu et al. in [17]. The former addresses this issue
structurally by devising a specific margin-ranking loss term
aimed keeping representations from different tasks separated.
However, the latter work proposes a much simpler and modular
solution, which we also apply here: the addition of a simple
Bias Correction Layer to the model. This layer consists in a
linear model with two parameters ↵ and � that compensates
the kth output logit ok as follows.

qk =

(
↵ · ok + � if k was trained in the last task
ok otherwise

(3)

Such a layer is applied downstream of the classifier to yield
the final output at test time. Thanks to its small size, it can
be easily trained at the end of each task by leveraging a
limited amount of exemplars. Importantly, while [17] employs
a separate validation set for this purpose, we simply exploit the
same replay buffer we use for rehearsal methods. Parameters ↵
and � are optimized through the cross-entropy loss, as follows:

`BiC = �
X

k

�y=k log[softmax(qk)]. (4)

We agree with the authors of [17] on the effectiveness of
this simple linear model to counter the above-mentioned bias.

C. Exponential LR Decay (ELRD)
Arguably, the best way to preserve previous knowledge

is not to learn anything new. To this aim, we propose to
decrease the learning rate progressively at each iteration; we

3https://github.com/facebookresearch/GradientEpisodicMemory
4https://github.com/rahafaljundi/Gradient-based-Sample-Selection

52

Experience Replay (ER): pseudocode

Algorithm 1 Experience Replay (ER) with Reservoir Sampling
procedure Train(D, θ, α, k)

M← {}
for t = 1, ...,T do

for (x, y) in Dt do
// Draw batch from buffer:
B← sample(x, y, k,M)
// Update parameters with mini-batch SGD:
θ ← SGD(B, θ, α)
// Memory buffer update:
M← M ∪ {(x, y)}

end for
end for
return θ,M

end procedure 53

Challenges

How to build the memory buffer?

Challenges. Due to the extremely limited
storage space, the key challenges consist of
how to construct and how to exploit the
memory buffer.

As for construction, the preserved old
training samples should be carefully
selected, compressed, augmented, and
updated, in order to recover the past
information in an adaptive manner.

ModelData
Aug.𝒙 𝒙𝒂𝒖𝒈

Memory
Buffer

𝒙𝒂𝒖𝒈𝒙𝒂𝒖𝒈𝒙𝒂𝒖𝒈

store

train

rehearse

𝒙𝒂𝒖𝒈𝒙𝒂𝒖𝒈𝒙𝒂𝒖𝒈

A new item
is sampled

from the stream A random exemplar is discarded
when the Memory Buffer is full

Reservoir

A random exemplar from the most
represented class is discarded
when the Memory Buffer is full

BRS

A random exemplar is discarded when the
Memory Buffer is full, with a probability

given by its recorded loss score.

LARS

Data
Aug.𝒙 Model𝒙𝒂𝒖𝒈

Memory
Buffer

𝒙𝒂𝒖𝒙

train

rehearse

store
Data
Aug.

𝒙𝒂𝒖𝒈𝒙𝒂𝒖𝒈𝒙𝒂𝒖𝒈′

prob.

Model

Data
Aug.

𝒙

Memory
Buffer

store

train

rehearse

𝒙

train

rehearse

store

Data
Aug.

Data
Aug.

𝒙
Memory
Buffer

Model

Reservoir LARS prob.BRS

𝒙 Input
Stream

Memory
Buffer

Cross-
Entropy

Loss

𝒙𝒂𝒖𝒙𝒓

store
examples

store
responses

MSE
Loss

Model

𝒚

𝒙
𝒚

𝒙
𝒚

𝒙
𝒚

𝒙
𝒚

𝒙
𝒚

𝒙
𝒚

𝒙
𝒚

… …

Input
stream

Output
logits

𝒙 Input
Stream

Memory
Buffer

Cross-
Entropy

Loss

store
examples
and labels

store
responses

MSE
and CE
Losses

Model

𝒚

𝒚

𝒙𝒂𝒖
𝒚

𝒙𝒓
𝒚

𝒙𝒂𝒖𝒈𝒙𝒂𝒖𝒈𝒙𝒂𝒖𝒈𝒙𝒂𝒖𝒈

𝒙𝒂𝒖𝒈𝒙𝒂𝒖𝒈𝒙𝒂𝒖𝒈

𝒙𝒂𝒖𝒈
𝒙𝒂𝒖𝒈

𝒙𝒂𝒖𝒈′𝒙𝒂𝒖𝒈′𝒙𝒂𝒖𝒈′

(a) (b)
Fig. 2. Graphical comparison between rehearsal on augmented examples (a)
and Independent Buffer Augmentation (b) (best in color).

to approximate it. Experience Replay addresses this issue
by storing exemplars and labels from previous tasks in a
replay buffer B. During each training step, it merges some of
these items with the current batch: consequently, the network
rehearses past tasks as it learns current data. This amounts to
optimizing the following loss term as a surrogate of Eq. 1:

L0 = E(x,y)⇠Dt

⇥
`(y, f✓(x))

⇤
+ E(x,y)⇠B

⇥
`(y, f✓(x))

⇤
. (2)

This practical solution only introduces two additional hyper-
parameters to f✓, namely the replay buffer size |B| and the
number of elements that we draw from it at each step. In
this work, we initially assume to update the buffer with the
reservoir sampling strategy [30] (see Alg. 1), as proposed
in [14]. This guarantees that each input exemplar has the
same probability |B|/|D| of entering the replay buffer. We
prefer this solution both to herding [2] and the class-wise
FIFO [19] strategies (a.k.a. ring buffer). Unlike reservoir, the
former needs to retain the entire training set of each task.
Conversely, the latter does not exploit the whole memory and
is more likely to overfit (as pointed out in [19]).

IV. TRAINING TRICKS

In this section, we discuss some issues that ER encounters
in the Class-IL setting and propose effective tricks to mitigate
them. On the one hand, Sec. IV-A, IV-D and IV-E describe
improvements to the replay buffer and can, therefore, easily
extend to other rehearsal-based methods. On the other hand,
the tricks described in Sec. IV-B and IV-C are more general
and applicable to any Class-IL method.

A. Independent Buffer Augmentation (IBA)
Data augmentation is an effective strategy for improving

the generalization capabilities of a Deep Network [31]. When
dealing with Continual Learning scenarios, one can apply data
augmentation on the input stream of data (i.e. the examples
shown to the net during each task). However, for a rehearsal
method, replayed exemplars constitute a significant portion
of the overall training input. This could pose a serious risk

of overfitting the memory buffer, which we address through
Independent Buffer Augmentation (IBA): in addition to the
regular augmentation performed on the input stream, we store
examples not augmented in the memory buffer; this way, we
can augment them independently when drawn for later replay.
By so doing, we minimize overfitting on the memory and
introduce additional variety in the rehearsal examples.

While adopting this simple expedient could seem a no-
brainer, its application in literature should not be taken for
granted. As an example, the CL methods implemented in the
codebase of [13]3 and [15]4 store the augmented examples in
the memory buffer and re-use them as-they-are, as illustrated
in Fig. 2(a). On the contrary, we remark that it is much more
beneficial to show the model replay examples that undergo
distinct transformations, as shown in Fig. 2(b).

B. Bias Control (BiC)
Given the sequential nature of the Class-IL setting, the

network’s predictions end up showing bias towards the current
task. Indeed, a single-head classifier is less prone to predicting
classes found in prior tasks than those learned just before
testing. Such bias is linked to the whole model and not
exclusively to its final classification layer: consequently, the
trivial solution of zeroing the latter is not beneficial.

This imbalance problem is analyzed by both Hou et al.
in [18] and Wu et al. in [17]. The former addresses this issue
structurally by devising a specific margin-ranking loss term
aimed keeping representations from different tasks separated.
However, the latter work proposes a much simpler and modular
solution, which we also apply here: the addition of a simple
Bias Correction Layer to the model. This layer consists in a
linear model with two parameters ↵ and � that compensates
the kth output logit ok as follows.

qk =

(
↵ · ok + � if k was trained in the last task
ok otherwise

(3)

Such a layer is applied downstream of the classifier to yield
the final output at test time. Thanks to its small size, it can
be easily trained at the end of each task by leveraging a
limited amount of exemplars. Importantly, while [17] employs
a separate validation set for this purpose, we simply exploit the
same replay buffer we use for rehearsal methods. Parameters ↵
and � are optimized through the cross-entropy loss, as follows:

`BiC = �
X

k

�y=k log[softmax(qk)]. (4)

We agree with the authors of [17] on the effectiveness of
this simple linear model to counter the above-mentioned bias.

C. Exponential LR Decay (ELRD)
Arguably, the best way to preserve previous knowledge

is not to learn anything new. To this aim, we propose to
decrease the learning rate progressively at each iteration; we

3https://github.com/facebookresearch/GradientEpisodicMemory
4https://github.com/rahafaljundi/Gradient-based-Sample-Selection

54

Reservoir sampling

Reservoir sampling provides an
online strategy to construct the
memory buffer.

In particular, it solves the problem of
keeping some limited number M of
N total items seen before with equal
probability M

N when you don’t know
what number N will be in advance.

Algorithm 2 Reservoir Sampling

procedure Reservoir(M,N, x, y)
if M > N then

M[N]← (x, y)
else

j = randint(min = 0,max = N)

if j < M then
M[j]← (x, y)

end if
end if
return M

end procedure

55

Other sampling strategies

Other common sampling strategies.

• Ring Buffer, which further ensures an equal number of old training samples
per class,

• Weighted reservoir sampling, retain difficult examples with higher probability,
• Mean-of-Feature selects an equal number of old training samples that are
closest to the feature mean of each class,

• Gradient-based or optimizable strategies as GSS, which maximizes the
sample diversity.

• Other fixed principles, such as the k-means.

56

Experience Replay: issues

Due to its simplicity, ER is an ideal starting point to develop a strong CL method.

However, it is affected by some key issues:

• ER repeatedly optimizes a relatively small buffer: possible overfitting problem
• Incrementally learning a sequence of classes implicitly biases the network
towards newer tasks.

Solution. Again, Knowledge Distillation (next slide).

57

Dark Experience Replay (DER)

Dark Experience Replay, DER: an approach relying on
Dark Knowledge for retaining past experiences.

As ER, it maintains a subset of past network responses
in a buffer B; then, in addition to the loss of the current
task Ltc , DER minimizes the L2 distances between past
and current outputs for buffer datapoints:

Ltc + α E(x,z)∼B
[
‖z− hθ(x)‖22

]
.

DER++ is a variant of DER that also asks the learner to
predict the ground truth labels for past examples.

Model
Data

Aug.
𝒙 𝒙𝒂𝒖𝒈

Memory

Buffer
𝒙𝒂𝒖𝒈𝒙𝒂𝒖𝒈𝒙𝒂𝒖𝒈

store

train

rehearse

𝒙𝒂𝒖𝒈𝒙𝒂𝒖𝒈𝒙𝒂𝒖𝒈

A new item

is sampled

from the stream A random exemplar is discarded

when the Memory Buffer is full

Reservoir

A random exemplar from the most

represented class is discarded

when the Memory Buffer is full

BRS

A random exemplar is discarded when the

Memory Buffer is full, with a probability

given by its recorded loss score.

LARS

Data

Aug.
𝒙 Model𝒙𝒂𝒖𝒈

Memory

Buffer

𝒙𝒂𝒖𝒙

train

rehearse

store
Data

Aug.
𝒙𝒂𝒖𝒈𝒙𝒂𝒖𝒈𝒙𝒂𝒖𝒈′

prob.

Model

Data

Aug.

𝒙

𝒙𝒂𝒖𝒈

Memory

Buffer

store

train

rehearse

𝒙𝒂𝒖𝒈𝒙𝒂𝒖𝒈𝒙𝒂𝒖𝒈

𝒙𝒂𝒖𝒈𝒙𝒂𝒖𝒈𝒙𝒂𝒖𝒈

𝒙

train

rehearse

store

𝒙𝒂𝒖𝒈𝒙𝒂𝒖𝒈𝒙𝒂𝒖𝒈′

Data

Aug.

Data

Aug.

𝒙𝒂𝒖𝒙
Memory

Buffer

Model

𝒙𝒂𝒖𝒈

Reservoir LARS prob.
BRS

𝒙
Input

Stream

Memory

Buffer

Cross-

Entropy

Loss

𝒙𝒂𝒖𝒙𝒓

store

examples

store

responses

MSE

Loss

Model

58

Dark Experience Replay (DER)

Ltc + α E(x,z)∼B
[
‖z− hθ(x)‖22

]︸ ︷︷ ︸
Function Regularization

MSE current responses vs
those stored in the memory buffer.

.

The logits stored into the memory buffer are not just
proxies for the ground-truth labels, but have a deeper
meaning

Secondary information: logits are more informative than
labels, as they encode visual similarities and the rela-
tions between classes.

• Therefore, they carry out a more insightful signal
regarding past tasks.

Model
Data

Aug.
𝒙 𝒙𝒂𝒖𝒈

Memory

Buffer
𝒙𝒂𝒖𝒈𝒙𝒂𝒖𝒈𝒙𝒂𝒖𝒈

store

train

rehearse

𝒙𝒂𝒖𝒈𝒙𝒂𝒖𝒈𝒙𝒂𝒖𝒈

A new item

is sampled

from the stream A random exemplar is discarded

when the Memory Buffer is full

Reservoir

A random exemplar from the most

represented class is discarded

when the Memory Buffer is full

BRS

A random exemplar is discarded when the

Memory Buffer is full, with a probability

given by its recorded loss score.

LARS

Data

Aug.
𝒙 Model𝒙𝒂𝒖𝒈

Memory

Buffer

𝒙𝒂𝒖𝒙

train

rehearse

store
Data

Aug.
𝒙𝒂𝒖𝒈𝒙𝒂𝒖𝒈𝒙𝒂𝒖𝒈′

prob.

Model

Data

Aug.

𝒙

𝒙𝒂𝒖𝒈

Memory

Buffer

store

train

rehearse

𝒙𝒂𝒖𝒈𝒙𝒂𝒖𝒈𝒙𝒂𝒖𝒈

𝒙𝒂𝒖𝒈𝒙𝒂𝒖𝒈𝒙𝒂𝒖𝒈

𝒙

train

rehearse

store

𝒙𝒂𝒖𝒈𝒙𝒂𝒖𝒈𝒙𝒂𝒖𝒈′

Data

Aug.

Data

Aug.

𝒙𝒂𝒖𝒙
Memory

Buffer

Model

𝒙𝒂𝒖𝒈

Reservoir LARS prob.
BRS

𝒙
Input

Stream

Memory

Buffer

Cross-

Entropy

Loss

𝒙𝒂𝒖𝒙𝒓

store

examples

store

responses

MSE

Loss

Model

𝒚

𝒙
𝒚

𝒙
𝒚

𝒙
𝒚

𝒙
𝒚

𝒙
𝒚

𝒙
𝒚

𝒙
𝒚

… …

Input

stream

Output

logits

59

Experimental results

Compared to existing approaches, ER, DER and DER++ achieve strong performance,
despite their simplicity.

SG
D

oE
W

C SI
Lw

F
G

EM

A
-G

EM FD
R

H
A

L

iC
aR

L

G
SS ER

D
ER

D
ER

++

0
10
20
30
40
50
60
70
80
90

A
vg

.A
cc

ur
ac

y
[%

]

Seq. CIFAR-10 - Class-IL

Buffer Size
N/A
200
500
5120

SG
D

oE
W

C SI
Lw

F
A

-G
EM

iC
aR

L

ER

FD
R

D
ER

D
ER

++

0

5

10

15

20

25

30

35

40

A
vg

.A
cc

ur
ac

y
[%

]

Seq. Tiny-ImageNet - Class-IL

60

Other rehearsal approaches

Other common rehearsal approaches.

• Gradient Episodic Memory (GEM) and its lightweight variant Average-GEM
(A-GEM)

• Meta Experience Replay (MER)
• Incremental Classifier and Representation Learning (iCaRL)
• Learning a Unified Classifier Incrementally via Rebalancing (LUCIR)

Approaches tailored to Vision Transformers (VIT):

• Learning-to-prompt (L2P)

61

Continual with Pre-trained models

Why using Pre-train?

Pre-Training is commonly employed in the vast majority of scenarios.

Pre-trained
Model

TASK 1 TASK 2 TASK 3

Continual
Learning

Continual
Learning

CL & Pre-training

• Pre-training is beneficial for classification;

• Evidence: it reduces forgetting in CL [1];

• Do CL & pre-training interfere?

[1] Mehta et al., An empirical investigation of the role of pre-training in lifelong learning. ICML 2021.

62

Pre-training & Catastrophic Forgetting

• ... due to forgetting it is effective only in the first task!
• CL does not protect pre-training from Forgetting

Pre-trained
Model

TASK 1 TASK 2 TASK 3

Pre-training Knowledge retained

Pre-training
incurs

Catastrophic
Forgetting

Continual
Learning

Continual
Learning

Pre-training & Catastrophic Forgetting

• Pre-training: very effective in early tasks…

• … but weaker in later tasks;

• CL does not protect pre-training from Forgetting!

63

Pre-training & Catastrophic Forgetting
Transfer without Forgetting: intuition

Pre-training
Knowledge

TASK 1 TASK 2 TASK 3

Transfer Learning
(without Forgetting)

Continual
Learning

Continual
Learning

• Aim 1: preserve pre-training features while training;

• Aim 2: facilitate their propagation.

Pre-trained
Model

• The objective is to use (transfer) its knowledge to the following tasks
• No need to maintain the ability to solve the pre-training task

The Pre-train is not an additional task 64

Transfer without Forgetting

Idea: distill knowledge from a frozen pre-trained sibling network.

Multilevel Knowledge
Distillation: features
from the sibling are
adapted by small
learned modules.

…

Model
Memory buffer

Current

batch

Sibling pre-trained
frozen model

Distillation

loss

Class. lossℒ𝐶𝐸

Replay lossℒ𝐶𝐿

ℒ𝐾𝐷

Transfer

Learning

Output

…

Transfer without Forgetting: overview

• DER++ [2] on the stream labels & logits replay;

• Multilevel Knowledge Distillation from frozen pre-trained sibling.
[2] Buzzega et al., Dark Experience for General Continual Learning. NeurIPS 2020. 65

Transfer without ForgettingSelective Transfer

Margin
ReLU

௄஽

Gated
MSE

Student activations

Pre-trained sibling network
activations

ON-OFF
gates

Selective
transfer

Feature Propagation Loss

• Feature Distillation: match in-training
and pre-trained activations;

• Modulated through attention gates
(spatial [3] and channel-wise [4] maps);

• Maps are also replayed during CL.

[3] Park et al., Bam: Bottleneck attention module. BMVC 2018.
[4] Ilse et al., Attention-based deep multiple instance learning. ICML 2018.

• Feature Distillation: match in-training and
pre-trained activations.

L∑
l=1

||M(ĥ(l); t)� (f(l) − ReLUm(ĥ(l)))||22

• Attention gates (spatial- and channel-wise)
modulate the transfer.

M(ĥ(l)) , gumbel(MCh(ĥ(l)) +MSp(ĥ(l)))

Attention maps are also replayed during CL.

66

Comparison with EwC and Replay

• Using EwC on pre-training weights (left)
• DER++ also replaying pre-training data (right)

Comparison with EWC and Replay

Alternatives:

• Using EwC [5] on pre-training weights (left);

• DER++ [2] also replaying pre-training data (right);

• Both effective, but less so than TwF.
[5] Kirkpatrick et al., Overcoming catastrophic forgetting in neural networks. PNAS 2017.

Both effective, but less so than TwF.
67

Other transfer learning strategies – Transformers & CL

Transformer-based architectures require extensive pre-train to achieve SOTA

• Prompting: a transfer learning
technique originated in the field
of Natural Language Processing

• With prompting we leave the
pre-trained knowledge intact
and only train a few additional
parameters

Pre-trained Model
TUNABLE

Model Tuning
(Fine-tuning)

Input sequence

Pre-trained Model
FROZEN

Input sequenceLEARNABLE
Soft Prompt

Prompt Learning

68

Learning to Prompt for Continual Learning

... training all the prompts in all tasks would incur forgetting!

• Learning to Prompt: Select a subset of prompts depending on the current
input

• Ideally, inputs that share information should also share prompts

Input Query function
Key

A key-value pair

Prompt pool

(a shared memory space)

Matched pairs

Prepend selected prompts Pretrained Embedding Layer

Classifier

Pretrained Transformer Encoder

Prediction

Input

...

AvgPool

Figure 2. Illustration of L2P at test time. We follow the same procedure at training time: First, L2P selects a subset of prompts from a
key-value paired prompt pool based on our proposed instance-wise query mechanism. Then, L2P prepends the selected prompts to the
input tokens. Finally, L2P feeds the extended tokens to the model, and optimize the prompt pool through the loss defined in equation 5.
The objective is learning to select and update prompts to instruct the prediction of the pre-trained backbone model.

age modality transformer-based sequence models [10, 56].
The definition is easy to generalize to other modalities and
sequence-based models.

Given an input of 2D image x ∈ RH×W×C and a pre-
trained vision transformer (ViT) f = fr ◦ fe (excluding
the classification head), where fe is the input embedding
layer, and fr represents a stack of self-attention layers [10].
Images are reshaped to a sequence of flattened 2D patches
xp ∈ RL×(S2·C), where L is the token length, i.e., the
number of patches, S is the patch size and C is the origi-
nal number of channels. To simplify notation, we assume
the first token in xp is the [class] token as part of the
pre-trained model [10]. The pre-trained embedding layer
fe : RL×(S2·C) → RL×D projects the patched image to
the embedding feature xe = fe(x) ∈ RL×D, where D is
the embedding dimension. When solving multiple down-
streaming tasks, we keep the large-scale pre-trained back-
bone frozen to maintain its generality following PT. The
direct application of PT is to prepend learnable parame-
ters Pe ∈ RLp×D, called a prompt, to the embedding fea-
ture xp = [Pe;xe], and feed the extended sequences to the
model function fr(xp) for performing classification tasks.
Different tasks have independent prompts and share one
copy of the large model.

Compared with ordinary fine-tuning, literature shows
that prompt-based learning results in a sequence-based
model having higher capacity to learn features [25,29]. De-
spite its successes in transfer learning to train individual
prompts for each task, prompting can not be directly ap-
plied to continual learning scenarios where test-time task
identity is unknown.

4. Learning to Prompt (L2P)

4.1. From prompt to prompt pool

The motivations of introducing prompt pool are three-
fold. First, the task identity at test time is unknown so

training task-independent prompts is not feasible. Second,
even if the task-independent prompt can be known at test
time, it prevents possible knowledge sharing between simi-
lar tasks [16]. Third, while the naive way of learning a sin-
gle shared prompt for all tasks enables knowledge sharing,
it still causes severe forgetting issue (see Section 5.4). Ide-
ally one would learn a model that is able to share knowledge
when tasks are similar, while maintaining knowledge inde-
pendent otherwise. Thus, we propose using a prompt pool
to store encoded knowledge, which can be flexibly grouped
as an input to the model. The prompt pool is defined as

P = {P1, P2, · · · , PM}, M = total # of prompts, (1)

where Pj ∈ RLp×D is a single prompt with token length
Lp and the same embedding size D as xe. Following the
notations in Section 3.2, we let x and xe = fe(x) be the in-
put and its corresponding embedding feature, respectively.
Note that we omit the task index t of x in our notation as
our method is general enough to the task-agnostic setting.
Denoting {si}Ni=1 as a subset of N indices from [1,M], we
can then adapt the input embedding as follows:

xp = [Ps1 ; · · · ;PsN ;xe], 1 ≤ N ≤M, (2)

where ; represents concatenation along the token length di-
mension. Prompts are free to compose, so they can jointly
encode knowledge (e.g. visual features or task information)
for the model to process. Ideally, we want to achieve a more
fine-grained knowledge sharing scheme via prompt com-
binations at the instance-wise level: similar inputs tend to
share more common prompts, and vice versa.

4.2. Instance-wise prompt query

We design a key-value pair based query strategy to dy-
namically select suitable prompts for different inputs (see
Figure 2). This key-valued memory query mechanism
shares some design principles with methods in other fields,

69

Learning to Prompt for Continual Learning

Input Query function
Key

A key-value pair

Prompt pool

(a shared memory space)

Matched pairs

Prepend selected prompts Pretrained Embedding Layer

Classifier

Pretrained Transformer Encoder

Prediction

Input

...

AvgPool

Figure 2. Illustration of L2P at test time. We follow the same procedure at training time: First, L2P selects a subset of prompts from a
key-value paired prompt pool based on our proposed instance-wise query mechanism. Then, L2P prepends the selected prompts to the
input tokens. Finally, L2P feeds the extended tokens to the model, and optimize the prompt pool through the loss defined in equation 5.
The objective is learning to select and update prompts to instruct the prediction of the pre-trained backbone model.

age modality transformer-based sequence models [10, 56].
The definition is easy to generalize to other modalities and
sequence-based models.

Given an input of 2D image x ∈ RH×W×C and a pre-
trained vision transformer (ViT) f = fr ◦ fe (excluding
the classification head), where fe is the input embedding
layer, and fr represents a stack of self-attention layers [10].
Images are reshaped to a sequence of flattened 2D patches
xp ∈ RL×(S2·C), where L is the token length, i.e., the
number of patches, S is the patch size and C is the origi-
nal number of channels. To simplify notation, we assume
the first token in xp is the [class] token as part of the
pre-trained model [10]. The pre-trained embedding layer
fe : RL×(S2·C) → RL×D projects the patched image to
the embedding feature xe = fe(x) ∈ RL×D, where D is
the embedding dimension. When solving multiple down-
streaming tasks, we keep the large-scale pre-trained back-
bone frozen to maintain its generality following PT. The
direct application of PT is to prepend learnable parame-
ters Pe ∈ RLp×D, called a prompt, to the embedding fea-
ture xp = [Pe;xe], and feed the extended sequences to the
model function fr(xp) for performing classification tasks.
Different tasks have independent prompts and share one
copy of the large model.

Compared with ordinary fine-tuning, literature shows
that prompt-based learning results in a sequence-based
model having higher capacity to learn features [25,29]. De-
spite its successes in transfer learning to train individual
prompts for each task, prompting can not be directly ap-
plied to continual learning scenarios where test-time task
identity is unknown.

4. Learning to Prompt (L2P)

4.1. From prompt to prompt pool

The motivations of introducing prompt pool are three-
fold. First, the task identity at test time is unknown so

training task-independent prompts is not feasible. Second,
even if the task-independent prompt can be known at test
time, it prevents possible knowledge sharing between simi-
lar tasks [16]. Third, while the naive way of learning a sin-
gle shared prompt for all tasks enables knowledge sharing,
it still causes severe forgetting issue (see Section 5.4). Ide-
ally one would learn a model that is able to share knowledge
when tasks are similar, while maintaining knowledge inde-
pendent otherwise. Thus, we propose using a prompt pool
to store encoded knowledge, which can be flexibly grouped
as an input to the model. The prompt pool is defined as

P = {P1, P2, · · · , PM}, M = total # of prompts, (1)

where Pj ∈ RLp×D is a single prompt with token length
Lp and the same embedding size D as xe. Following the
notations in Section 3.2, we let x and xe = fe(x) be the in-
put and its corresponding embedding feature, respectively.
Note that we omit the task index t of x in our notation as
our method is general enough to the task-agnostic setting.
Denoting {si}Ni=1 as a subset of N indices from [1,M], we
can then adapt the input embedding as follows:

xp = [Ps1 ; · · · ;PsN ;xe], 1 ≤ N ≤M, (2)

where ; represents concatenation along the token length di-
mension. Prompts are free to compose, so they can jointly
encode knowledge (e.g. visual features or task information)
for the model to process. Ideally, we want to achieve a more
fine-grained knowledge sharing scheme via prompt com-
binations at the instance-wise level: similar inputs tend to
share more common prompts, and vice versa.

4.2. Instance-wise prompt query

We design a key-value pair based query strategy to dy-
namically select suitable prompts for different inputs (see
Figure 2). This key-valued memory query mechanism
shares some design principles with methods in other fields,

• Each prompt Pi is associated to a learnable key ki: {(Pi, ki)}Ni=1

• Introduce a query function q(x) and select the M prompts whose key best
matches the query: Kx = argmin{si}N

i=1⊆[1,M]

∑N
i=1 diff(q(x), ksi)

• Directly use the pre-trained frozen model to get the query: q(x) = f0(x)

• Replay free!

70

Learning to Prompt for Continual Learning

More elaborate prompting mechanisms are possible

• DualPrompt, CODA-Prompt, S-Prompt to name a few.
• We can adapt even Large Pretrained Models (e.g., CLIP) – see Prompt-Fusion,
AttriCLIP

... but is it the best we can do?

• Some preliminary works suggest that fine-tuning the whole model can
achieve higher performance even in continual

71

Credits

Credits i

These slides heavily borrow from a number of awesome sources. I’m really
grateful to all the people who take the time to share their knowledge on this
subject with others.
In particular:

• De Lange, M., Aljundi, R., Masana, M., Parisot, S., Jia, X., Leonardis, A., ... &
Tuytelaars, T. (2021). A continual learning survey: Defying forgetting in
classification tasks. IEEE transactions on pattern analysis and machine
intelligence, 44(7), 3366-3385.

72

Credits ii

• Wang, L., Zhang, X., Su, H., & Zhu, J. (2023). A comprehensive survey of
continual learning: Theory, method and application. arXiv preprint
arXiv:2302.00487.

73

References i

• Barnes, J. M., & Underwood, B. J. (1959). ” Fate” of first-list associations in
transfer theory. Journal of experimental psychology, 58(2), 97.

• McCloskey, M., & Cohen, N. J. (1989). Catastrophic interference in
connectionist networks: The sequential learning problem. In Psychology of
learning and motivation (Vol. 24, pp. 109-165). Academic Press.

• Van de Ven, G. M., & Tolias, A. S. (2019). Three scenarios for continual learning.
arXiv preprint arXiv:1904.07734.

• Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A. A.,
... & Hadsell, R. (2017). Overcoming catastrophic forgetting in neural networks.
Proceedings of the national academy of sciences, 114(13), 3521-3526.

74

References ii

• Lopez-Paz, D., & Ranzato, M. A. (2017). Gradient episodic memory for continual
learning. Advances in neural information processing systems, 30.

• Nguyen, C. V., Li, Y., Bui, T. D., & Turner, R. E. Variational Continual Learning. In
International Conference on Learning Representations.

• Rusu, A. A., Rabinowitz, N. C., Desjardins, G., Soyer, H., Kirkpatrick, J.,
Kavukcuoglu, K., ... & Hadsell, R. (2016). Progressive neural networks. arXiv
preprint arXiv:1606.04671.

• Mallya, A., & Lazebnik, S. (2018). Packnet: Adding multiple tasks to a single
network by iterative pruning. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition (pp. 7765-7773).

75

References iii

• Serra, J., Suris, D., Miron, M., & Karatzoglou, A. (2018, July). Overcoming
catastrophic forgetting with hard attention to the task. In International
Conference on Machine Learning (pp. 4548-4557). PMLR.

• Mallya, A., Davis, D., & Lazebnik, S. (2018). Piggyback: Adapting a single
network to multiple tasks by learning to mask weights. In Proceedings of the
European Conference on Computer Vision (ECCV) (pp. 67-82).

• Li, Z., & Hoiem, D. (2017). Learning without forgetting. IEEE transactions on
pattern analysis and machine intelligence, 40(12), 2935-2947.

• Riemer, M., Cases, I., Ajemian, R., Liu, M., Rish, I., Tu, Y., & Tesauro, G. (2018).
Learning to learn without forgetting by maximizing transfer and minimizing
interference. arXiv preprint arXiv:1810.11910.

76

References iv

• Buzzega, P., Boschini, M., Porrello, A., Abati, D., & Calderara, S. (2020). Dark
experience for general continual learning: a strong, simple baseline.
Advances in neural information processing systems, 33, 15920-15930.

• Rebuffi, S. A., Kolesnikov, A., Sperl, G., & Lampert, C. H. (2017). icarl:
Incremental classifier and representation learning. In Proceedings of the IEEE
conference on Computer Vision and Pattern Recognition (pp. 2001-2010).

• Aljundi, R., Lin, M., Goujaud, B., & Bengio, Y. (2019). Gradient based sample
selection for online continual learning. Advances in neural information
processing systems, 32.

77

References v

• Hou, S., Pan, X., Loy, C. C., Wang, Z., & Lin, D. (2019). Learning a unified classifier
incrementally via rebalancing. In Proceedings of the IEEE/CVF conference on
Computer Vision and Pattern Recognition (pp. 831-839).

• Wang, Z., Zhang, Z., Lee, C. Y., Zhang, H., Sun, R., Ren, X., ... & Pfister, T. (2022).
Learning to prompt for continual learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (pp. 139-149).

• Boschini, M., Bonicelli, L., Porrello, A., Bellitto, G., Pennisi, M., Palazzo, S., ... &
Calderara, S. (2022, October). Transfer without forgetting. In European
Conference on Computer Vision (pp. 692-709).

78

References vi

• Z., Gengwei, W., Liyuan, K., Guoliang, C., Ling, & W., Yunchao. SLCA: Slow Learner
with Classifier Alignment for continual learning on a pre-trained model. In
Proceedings of the IEEE/CVF International Conference on Computer Vision.

• Smith, J. S., Tian, J., Halbe, S., Hsu, Y. C., & Kira, Z. (2023). A closer look at
rehearsal-free continual learning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (pp. 2409-2419).

79

	Introduction
	Continual Learning
	Architectural approaches
	Regularization approaches
	Rehearsal approaches
	Continual with Pre-trained models
	Credits

