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Human intelligence. Human beings can learn new tasks and, at the same time,
they can remember what learned before.
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Neural Networks and memories

Catastrophic Forgetting. Instead, Neural Networks, when trained on a sequence
of tasks, forget old tasks: i.e., they may perform well on the examples of the
current task, but their capabilities on old tasks drop.
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Humans vs Neural Networks Image
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Barnes & Underwood first highlight the dynamics of forgetting in 1959.

e Task 1: subjects learn a series of

word pairs (e.g., home-star, field-sky, Am’ e
) ; ]
e Task 2: right-hand items of pairs §°1/ ™
change (e.g., home-field, field-car, g
®
Result. Human subjects forget about P01 610 nis 160 a1z 230 w15 w0 4145 4050

Learning Trials on A-C List

pairs from Task 1 as more pairs from
Task 2 are observed...

Barnes & Underwood. “Fate” of first-list associations in transfer theory. J Exp. Psychol, 1959. 4



Humans vs Neural Networks (2)

In 1989, McCloskey & Cohen repeat the
same experiment with Artificial Neural

100 ,)’
Networks. . <+
2 80
They find that degradation is much more § >
. . g ASk 7
severe in NNs: a few learning steps are : /o — fumans
enough to drive accuracy to zero. ™ ° <
£ o
. . . . . ©
This is an intrinsic property of NNs, * TASK 1
. . o T T T v ¥ ¥ ¥ ¥ ¥ v
Whlch they Ca“ Catastrophlc 0 1-5  8-10 11-15 16-20 21-25 26-30 31-35 36-40 41-45 46-50

Leaming Trials on A-C List

Forgetting.

McCloskey & Cohen. Catastrophic interference in connectionist networks: The sequential learning
problem. Psychol Learn Motiv, 1989
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So, Neural Networks forget.

Why? How?
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Catastrophic forgetting: why? Image
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So, Neural Networks forget.
Why? How?

It is principally due to the optimization algorithm (i.e., gradient descent or its
stochastic variants — SGD).



Catastrophic forgetting: why? (2)

A NN has its set of parameters W

(i.e., a set of weights and biases).

Optimization starts from a random

point Wy in parameter space and

reaches a local minimum, within a

region where the error is small on PY

the task being learned. Wo
(initialization)

low error
for task A




Catastrophic forgetting: why? (3)
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optimum

Given a task A: for Task A

Wa

Optimization starts from a random
point Wy in parameter space and SGD on
reaches a local minimum W 4, within TaskA \
a region where the error is small on -
the task being learned.

low error
for Task A

(initialization)



Catastrophic forgetting: why? (4)

Considering a second incoming task
B:

The task B has its own loss
landscape that the network is going
to optimize, irrespective of the error
of any other task.

na and Reggio Emilia

optimum
for Task A
W,

SGD on low error low error
Task A ‘: for Task A for Task B
-
P}
I
[
W,

(initialization)
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Catastrophic forgetting: why? (5)

To change its behavior or learn how
to perform the second task, the

network must change its parameters.

SGD moves without constraints
throughout a new region in
parameter space, until it reaches a
new local optimum Wg.
— Catastrophic forgetting.

e Loss for Task B: low )

e Loss for Task A: high :(

SGD on Task b

T\
optimum
for Task B

. CambS
optimum K \

for Task A r' \

low error
for Task B

low error
for Task A

11



Catastrophic forgetting: why? (5)

na and Reggio Emilia

Theoretically, NNs are
over-parametrized.

Over-parameterization makes it
likely that there is a solution for
Task B, Wa g, that is close to the
previously found solution for Task A,
Wa.

SGD on Task b

. PLIN N\
optimum / \\ optimum
for Task A ’«' N, for Task'B

low error
for Task B

low error
for Task A

low error
for both

12



Catastrophic forgetting: why? (6)

Continual Learning techniques
aim at protecting the
performance in previous tasks by
constraining the subsequent
learning (e.g., to stay in a region
of low error for Task A).

Challenge. Do it with no access
to the examples of Task A.

SGD on Task b

T\
optimum
for Task B

N
N

optimum 'I
for Task A r' \

low error
for Task B

low error
for Task A

low error
for both

13



Continual Learning (CL)

Continual Learning (CL) studies
how to train a ML system from a
stream of changing data.

It's a rapidly growing new trend
in ML research.

‘ Google Trend for
“CONTINUAL LEARNING”

Google
Trends

T T T T T
2018 2019 2020 2021 2022

Number of CL publications in major Al conferences

BN Meta Imm Others
- Google Microsoft

R AN N N R N RN AR AN AR g 0'9’ SUANS &’5 N
A T T T T T T T T P e S b P T e T
\'C\?d“\é\\\‘?\vﬁd‘&@?ﬁ& g\cy\\qce\(/c‘\gzcys
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Continual Learning (CL)

Beyond academia: cutting-edge startups and ML-driven corps are pioneering CL
solutions.

e ad Google
) v e ~3 neurala
TensorFlow fifeJIong-DNNTM

T=sLAE Extended

15
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A CL classification problem is split in T tasks; during each task t € {1, ..., T} input
samples x and their corresponding ground truth labels y are drawn from an i.i.d.
distribution Ds.

Task 1 Task 5
first second first  second first second first second first  second
class class class class class class class class class class

A function f, with parameters 6, has to be optimized on one task at a time, in a
sequential manner.

. . . . 16
Image from "Three scenarios for continual learning” by Gido M. van de Ven et. al. (2019).
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Common objective Image
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GOAL: to correctly classify, at any given point in training, examples from any of the

observed tasks up to the currentone t € {1,... tc}:
te
arggninZEt, where Ly £ B yyon, [y, fo(x))]- (1)
t=1

Challenge. Data from previous tasks are assumed to be unavailable, meaning that
the best configuration of 8 w.rt. £; s, must be sought without Dy for
te{l,...,tc — 1}

17
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Elastic Weigth Consolidation (EWC). Introduced by Kirkpatrick et. al. in 2017, it is
one of first approaches to deal with catastrophic forgetting.

Biologically inspired. EWC takes inspiration from brains.

e Plasticity. The ability of the nervous system to change its activity in response
to intrinsic or extrinsic stimuli by reorganizing its structure, functions, or
connections.

e Synaptic consolidation enables continual learning by reducing the plasticity
of synapses that are vital to previously learned tasks.

18



Elastic Weight Consolidation (2) gmage
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Synaptic consolidation enables continual learning by reducing the plasticity of
synapses that are vital to previously learned tasks.

Similarly, EWC constraints important = Low error for task B == EWC
parameters to stay close to their old = Low error for task A L2 penalty
values through a tailored regularization

loss (a quadratic penalty).

L(O) = Lp(0) + > %Fi(ei — 0%,

Image from "Overcoming catastrophic forgetting in neural networks” by Kirkpatrick et. al. (2017).

19



Elastic Weight Consolidation (3) gmage
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Similarly, EWC constraints important parameters to stay close to their old values
through a tailored regularization loss (a quadratic penalty).

A .
L) = Lp(0) +3 " SF(0 - 04,)°
N~ N—— : 2
Total loss Loss for Task B only

-~

to be optimized  eg. the Cross-Entropy EWC regularization

objective

where:

e 0} is the set of optimum parameters for the previous task A
e I is an estimate of how much each parameter 03 ; is important for
preserving the performance in task A

e ) is an hyper-parameter.
20



Elastic Weight Consolidation (4) gmage
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Similarly, EWC constraints important parameters to stay close to their old values
through a tailored regularization loss (a quadratic penalty).

A
L) = Ly (0) +>  SFi(6 - 63,)°
N ~— : 2
Total loss Loss on Task B

-~

to be optimized  e.g. the Cross-Entropy EWC regularization

objective

It can be imagined as a spring anchoring the parameters to the previous solution,
hence the name elastic.

Importantly, the stiffness of this spring should not be the same for all parameters;
rather, it should be greater for those parameters that matter most to the

performance during task A. o1



How to estimate per-parameter importance? Image
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The formula introduced in the previous slides requires to determine which
parameters are important.

How? Many heuristics could be envisioned; EWC uses the diagonal of the
empirical Fisher Information Matrix computed at the optimum of the first task 3.

I, = Z Volog p(x[03)  Volog p(x03)"

i=1 gradients of the loss function

It can be computed from first-order derivatives (easy to calculate) by a simple
moving average of squared gradients.

Check the PyTorch implementation here or here.
22


https://github.com/aimagelab/mammoth/blob/master/models/ewc_on.py
https://github.com/moskomule/ewc.pytorch/blob/master/utils.py#L29-L48

Fisher Information Matrix

There is a theoretical relation between the
empirical Fisher Information Matrix (FIM) and the
second derivative of the loss near a minimum.

As such, the FIM captures the curvature of the
log likelihood function: a high Fisher information
indicates that the log likelihood is sharply
peaked there.

For such a reason, it would be inconvenient to
modify the corresponding weight.

Image™

dena and Reggio Emilia

loss on
Task A

High 2nd derivative

— high importance, high penalty

Small 2nd derivative

— |ow importance, low penalty

23



Continual Learning



Continual Learning Benchmarks

Continual Learning approaches are predominantly evaluated on abstract image
classification settings:

e Sequential MNIST: Task 1: classify 0 and 1;
Task 2: classify 2 and 3, etc.

e Sequential CIFAR: Task 1: airplane vs car;
Task 2: bird vs cat, etc.

e Rotated MNIST: classify digits with rotation
changing.

e Permuted MNIST: classify digits with a
different pixel permutation for each task.

Long and complex benchmarks are regarded as more realistic, but can be quite
demanding in terms of total compute. 24
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Evaluation protocol Image
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Train/test splits. Each task is split into training and test sets.

e Training phase: the model learns the tasks in a sequential manner.

e Testing phase: the model is evaluated all on the test sets jointly (order does
not matter).

Multiple epochs are usually allowed on each task, so that the model can fit the
current task well.

Hyperparameter tuning and cross-validation Unfortunately, no established and
common practices already exist.

25
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Metrics Image
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Metrics. The average accuracy is the most common one.

Formally. Given a test set for each of the T tasks, and indicating with R, ; the test
classification accuracy on task t; after observing the last sample from task t;, we
have:

T
1
Average Accuracy: ACC = T;RTJ. (2)
i=

It can be measured either at any given point within the tasks’ sequence, or after
the end of the last task (as in the formula).

Other metrics could be used, such as Backward and Forward Transfer (BWT and
FWT), introduced by David Lopez-Paz et. al. in "Gradient Episodic Memory for
Continual Learning”. 26



Evaluation and metrics
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ST (best, A = 0.5)

EWC (best, A = 100)
EWC (A=1)

LP (best, A =0.1)

LP (A=1)

VCL

VCL + Random Coreset
Random Coreset Only
VCL + K-center Coreset
K-center Coreset Only

Figure 2: Average test set accuracy on all observed tasks in the Permuted MNIST experiment.

Image from "Variational Continual Learning” by Nguyen et. al. (2017).

27



Continual Learning: three scenarios
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Three main evaluation scenarios:

e Task-Incremental Learning (Task-IL)
e Class-Incremental Learning (Class-IL)

e Domain-Incremental Learning (Domain-IL)

28



Task-Incremental Learning (Task-IL)

Task-Incremental Learning (Task-IL)

e During training, each task is learned separately;

e At test time, each example to be tested is coupled with its task identity,
indicating the index of the task the example belongs to.

e This way, the model can select the right classification head.

..gm ~ -BE

X

»niy: o 1 1 ‘y: 0 1 1 2

< o) . Q

ot g 522 §om
Input Class Class

29



Class-Incremental Learning (Class-IL)

Class-Incremental Learning (Class-IL)

Class

e As in Task-IL, each task is learned separately during training;

e Differently from Task-IL, task identities are not provided at test time;

e Class-IL is more challenging, as the model has to guess the correct class
among all the classes seen so far.

30



Domain-Incremental Learning (Domain-IL)

Domain-Incremental Learning (Domain-IL)

e Differently from both Task-IL and Class-IL, the set of classes remains stable
across the tasks and does not grow,

e Each task introduces a domain shift, a change in the underlying probability
distribution the input are sampled from,

e It may be simulated through data transformation (e.g. rotations,
permutations),

2y:01§ y: 0 1

31

Class



Other scenarios in literature

General Continual Learning: no clear
boundaries between subsequent tasks;
the data distribution is supposed to
change smoothly over time.

Online Class-IL/Task-IL: only a single
pass (epoch) is allowed on each task.

Lab

Image

odena and Reggio Emilia

Continual Learning (CL)

Task 1 Task 2
mlElo HBEgE |
 mOpR_ | B2y

nnm > 13

General Continual Learning (GCL)

ol 1oL dolalolzfs] 2l al4 1= s]4[a]s
oL lelelelslislz3Tz[=l5l 4] 2 [4]<T 4]
nnmln Ed gl adEnENn
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Other scenarios in literature (2) Image
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Continual semi-supervised/self-supervised learning: examples may be either
partly labeled, or completely unlabeled.

Data-Incremental Learning (Data-IL): the set of classes is stable across tasks; the
tasks derive from different partitions of the original training set.

N.B. In this lecture, we will focus on Class-IL, which is by far the most
studied.

33



A taxonomy of CL approaches Image
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CL approaches are typically categorized
into three categories:

[_]Low Error region for task B
[_ILow Error region for task A

Y
e Regularization methods: specific | ’4”,___\‘_\ ’Lw(f” | ’
loss terms (weight importance, it

knowledge distillation) to prevent

the model from changing. vain
. . IQ l -
e Replay methods: store previously

store

seen examples in a memory buffer
. . . Memory
and use them in later iterations. Butfer mme

e Architectural methods: distinct
sub-models for distinct tasks.

34



Architectural approaches




Weight sharing gmage
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Observation. NNs forget as the updates introduced in later tasks overwrite the
optimal parametrization attained for past tasks.

e Learning all incremental tasks with a shared set of parameters (i.e., a single
model as well as one parameter space) is a major cause of the inter-task
interference.

How can we mitigate it?

35



Architectural approaches

Image

Lab

dena and Reggio Emilia

Architectural methods devote distinct sub-models/task-specific
parameters for distinct tasks.

Main idea. adding new parameters, tailored
for the new tasks.

These approaches isolate parameters for
specific tasks and can guarantee maximal
stability by fixing the parameter subsets of
previous tasks.

Image from "Progressive Neural Networks” (PNN) by
Rusu et. al. (2016).

outputy

outputs

36



ve Neural Networks

An example: Progressive Neural Networks

(PN N) by Rusu et. al.. outputy outputy outputs
a

)
In PNN, Catastrophic forgetting is prevented
by instantiating a new neural network (a '
column) for each task being solved, while

transfer is enabled via lateral connections
to features of previously learned columns.

Image from "Progressive Neural Networks” (PNN) by
Rusu et. al. (2016).

37



ve Neural Networks: advantages

Accuracy. Progressive networks are immune
to catastrophic forgetting by design.

Knowledge reuse. The addition of new
capacity alongside pretrained networks gives
these models the flexibility to both reuse old
computations and learn new ones.

.. what about its disadvantages?

Image from "Progressive Neural Networks” (PNN) by
Rusu et. al. (2016).

outputy

[}

outputs outputs
2 |

38



e Neural Networks: disadvantages (1)

Not scalable. The number of parameters outputy outputs output;
a

grow with the number of tasks.

e Huge memory requirements :(

e There is an intrinsic bound on the
number of tasks that can be learned :(

Image from "Progressive Neural Networks” (PNN) by
Rusu et. al. (2016).

39



e Neural Networks: disadvantages (2)

outputy outputs outputs
Not suitable for Class-IL. Choosing which ' ald 2 |

column to use for inference requires
knowledge of the task label, which is
allowed only in the Task-IL scenario.

Image from "Progressive Neural Networks” (PNN) by
Rusu et. al. (2016).

40



Solutions Image
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Addressing the scalability issue. The authors of PNN observed that only a
fraction of the new capacity is actually utilized, and that this trend increases with
more columns.

Countermeasures. Adding fewer layers or less capacity, by pruning, or by online
compression during learning. Some examples:

e PackNet (next slide)

e PathNet

e Piggyback

e HAT (Hard Attention to the Task)

41



PackNet

PackNet by Mallya et. al. exploit redundancies in large deep networks to free up
parameters that can then be employed to learn new tasks.

Iterative pruning and Network re-training. PackNet sequentially packs multiple
tasks into a single network with minimal drop in performance and storage
overhead.

OO0 o0 Q0000 00000
o O OeO||O0 000 06000
O o ||O e 0000 | 00000

O o100 O |00 O||00e 0O
o O O® O000| 0000

(a) Initial filter for Task | b) Final filter for Task | (c) Initial filter for Task Il d) Final filter for Task Il (e) Initial filter for Task Il

N N7

60% pruning + re-training training 33% pruning + re-training training

42
Image from "PackNet: Addine Multiple Tasks to a Single Network by Iterative Pruning” by Mallva et. al.
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Regularization approaches Image
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Regularization approaches add explicit regularization terms in the loss
function to balance the old and new tasks.

They apply weight sharing across tasks and do not instantiate additional
parameters.

e Reduced memory footprint :)
e An example from previous slides: EWC

However, the auxiliary regularization objective usually requires to store a frozen
copy of the old model for reference.

43



Regularization approaches (2)
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Depending on the target of
regularization, such methods @ o
can be divided into two
sub-directions.

Weight
Regularization|

e Weight regularization

e Function regularization

Image from "A Comprehensive Survey of v
Continual Learning: Theory, Method and A — ( ) O
Application” by Wang et. al. (2023). logit —euarization - it

44



Imagel.ab

Weight regularization
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Weight regularization approaches
selectively regularize the variation of @i Oid odl &i New Model

network parameters.

e.g., through a quadratic penalty
that penalizes the variation of each
parameter depending on its

. . -
importance to performing the old @ - A
Function

taS kS . Regularization

logit logit

Weight

Regularization

Some examples: EWC, Synaptic Intelligence (SI), MAS, Rwalk, etc.

45
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Function regularization
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Function regularization approaches
target the intermediate or final @i ouvisa @i New Mo
output of the prediction function.

Weight

Regularization

E TANA 2
———> feature
Function
. Regularization .
logit logit

Some examples: Learning without Forgetting (LwF, next slides).

Teacher-student paradigm. They
typically employ the
previously-learned model as the ,
teacher and the currently-trained @
model as the student.

46



Learning without Forgetting (LwF) Image
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Goal. To learn a network that can
perform well on both old tasks and new
tasks when only new-task data is

present. (e) Learning without Forgetting

Input: Target:
LwF in few words model (a)’s
K ¢ response for

nier\;/;a: G@’ old tasks

Applying Knowledge Distillation (KD) £ -

new tas

between the teacher (the old network, ground truth

with frozen parameters) and the student
(the current one, learning the current
task).

47
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Learning without Forgetting (LwF) Image
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Step 1: Given a new-task image, compute a forward pass through the network
appointed at the end of the previous task (the teacher).

This way, you have an output
(probability), which can be treated as an

(e) Learning without Forgetting
additional “pseudo label” for the

Input: Target:
new-task data.
model (a)’s
¢ response for
Step 2: Train a new network (the nfx;g:k% old tasks
student) only on the examples of the new task
new task, using both the true labels and ground truth

the generated pseudo labels.

48



Regularization approaches: a summary Image
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Advantages.

e Bounded memory cost

e They can further distills knowledge on the large stream of unlabeled data
that may be available in the wild

Disadvantages.

e Not very effective on long tasks
e Vulnerable to domain shift between tasks

Solution. Provide a few training samples from old tasks (replaying approaches
—).

49



Rehearsal approaches




Lab

Rehearsal approaches yma e
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Rehearsal approaches store previously
seen examples in a memory buffer and use
them in later iterations.

Experience replay (ER). An old, simple, yet
surprisingly effective baseline for CL.

e Simple and straightforward :)

e Performance proportional to memory
size «(

e It may clash with privacy constraints :(

50
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Image

Experience replay (ER)
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Experience replay (ER) stores a few old rehearse
training samples within a small memory IJ:}
xaug

buffer B, with fixed memory capacity.

e e.g., it can contain only 500 examples of train

past tasks. Hﬁ
7 ]
[ Xaug| store Yaug

Loss function. Indicating with ¢ the

cross-entropy loss between the output fy MBeJrfle:y
and the true labels y, we have that: Rﬂ;a
Ler = B(x,y)~p, [g(y, fG(X))] TE(y)~8 [Z(y, fe(x))] ' x

51



ence replay (ER)

Ler = Exy)~p, [g(y, fG(X))] + B y)on [ﬁ(y, fa(x))],

/

Current task
loss on a batch from
the current task

Memory buffer
loss on a batch sampled
from the memory buffer B

Image

Lab

lodena and Reggio Emilia

rehearse

train

J
Xaug

store

Xaug [

Xaug

Memory
Buffer

52
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Experience Replay (ER): pseudocode Image
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Algorithm 1 Experience Replay (ER) with Reservoir Sampling

procedure Train(D, 0, a, k)
M+ {}
fort=1,...,T do
for (x,y) 1n Dy do
// Draw batch from buffer:
B + sample(x, y, k, M)
// Update parameters with mini-batch SGD:
0 + SGD(B, 0, «)
// Memory buffer update:
M MU {(xy)}
end for
end for
return 6, M
end procedure 53
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Challenges gmage
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How to build the memory buffer? M

rehearse
Challenges. Due to the extremely limited " i
storage space, the key challenges consist of o
how to construct and how to exploit the

memory buffer. I
Xaug| store Xaug|

As for construction, the preserved old

train

.. Memo
training samples should be carefully Buﬂe:y
Data
selected, compressed, augmented, and Aug.
updated, in order to recover the past
information in an adaptive manner. X

54



Reservoir sampling

Reservoir sampling provides an
online strategy to construct the
memory buffer.

In particular, it solves the problem of
keeping some limited number M of
N total items seen before with equal
probability ¥ when you don’t know
what number N will be in advance.

Lab

Image

of Modena and Reggio Emilia

Algorithm 2 Reservoir Sampling

procedure Reservoir(M, N, x,y)
if M > N then
MIN]  (x,)
else
j = randint(min = 0, max = N)

if j<M then
M| < (x,y)
end if
end if
return M

end procedure

55
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Other sampling strategies Image
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Other common sampling strategies.

e Ring Buffer, which further ensures an equal number of old training samples
per class,

e Weighted reservoir sampling, retain difficult examples with higher probability,

e Mean-of-Feature selects an equal number of old training samples that are
closest to the feature mean of each class,

e Gradient-based or optimizable strategies as GSS, which maximizes the
sample diversity.

e Other fixed principles, such as the k-means.

56
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Experience Replay: issues Image
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Due to its simplicity, ER is an ideal starting point to develop a strong CL method.

However, it is affected by some key issues:

e ER repeatedly optimizes a relatively small buffer: possible overfitting problem

e Incrementally learning a sequence of classes implicitly biases the network
towards newer tasks.

Solution. Again, Knowledge Distillation (next slide).

57



Lab

Dark Experience Replay (DER) gmage
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Dark Experience Replay, DER: an approach relying on

Dark Knowledge for retaining past experiences. sors

As ER, it maintains a subset of past network responses

in a buffer B; then, in addition to the loss of the current  cross- s
Entropy 0ss

task Li,, DER minimizes the L? distances between past  toss
and current outputs for buffer datapoints:

Memory
Buffer

Li.+ a By yos]llz —he(x)]3]-

store
examples

DER++ is a variant of DER that also asks the learner to Input
predict the ground truth labels for past examples. * | stream

58
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Dark Experience Replay (DER) Image
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Lo+ a B gyan|llz = ho(x)5] -

Function Regularization
MSE current responses vs
those stored in the memory buffer. Input Output
stream logits

The logits stored into the memory buffer are not just
proxies for the ground-truth labels, but have a deeper
meaning

Secondary information: logits are more informative than 0]
labels, as they encode visual similarities and the rela- E
tions between classes.

e Therefore, they carry out a more insightful signal
regarding past tasks. 59



rimental results

Compared to existing approaches, ER, DER and DER++ achieve strong performance,
despite their simplicity.

Seq. CIFAR-10 - Class-IL Seq. Tiny-ImageNet - Class-IL

80 4| Buffer Size
§70- B N/A
= 60| M 200
500

DER
DER**
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Other rehearsal approaches Image
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Other common rehearsal approaches.

e Gradient Episodic Memory (GEM) and its lightweight variant Average-GEM
(A-GEM)

e Meta Experience Replay (MER)
e Incremental Classifier and Representation Learning (iCaRL)
e Learning a Unified Classifier Incrementally via Rebalancing (LUCIR)

Approaches tailored to Vision Transformers (VIT):

e Learning-to-prompt (L2P)
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Continual with Pre-trained models




Lab

Image

lodena and Reggio Emilia
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Pre-training & Catastrophic Forgetting Image
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e .. due to forgetting it is effective only in the first task!

e CL does not protect pre-training from Forgetting
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Pre-training & Catastrophic Forgetting

—-_————

Pre-trained

—_——— e —— -

Continual = Continual
Learning o Learning

e
e

e The objective is to use (transfer) its knowledge to the following tasks
e No need to maintain the ability to solve the pre-training task

The Pre-train is not an additional task 64



Transfer without Forgetting

Idea: distill knowledge from a frozen pre-trained sibling network.

R s e
Multilevel Knowledge @ m o

Distillation: features @ | ‘
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Sibling pre-trained
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Transfer without Forgetting Image
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i]i Student activations e Feature Distillation: match in-training and
ON-OFF Gated -trai i i
ovorr e pre-trained activations.

‘ L
| NI ST IMGO; ) © (FV — ReLU, (AD))]13
['KD ; : 1=1

e Attention gates (spatial- and channel-wise)

im Selective T80 modulate the transfer.
Pre-trained sibling network M(h(l)) £ gumbel(Mch (h(l)) + Msp(h(l)))
activations

Attention maps are also replayed during CL.
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Comparison with EwC and Replay Image

dena and Reggio Emilia

e Using EwC on pre-training weights (left)
e DER++ also replaying pre-training data (right)
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B =500 B = 2000 % of B for pretraining data

Both effective, but less so than TwF.
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Other transfer learning strategies — Transformers & CL

Transformer-based architectures require extensive pre-train to achieve SOTA

e Prompting: a transfer learning
technique originated in the field
of Natural Language Processing

e With prompting we leave the
pre-trained knowledge intact
and only train a few additional
parameters

Model Tuning
(Fine-tuning)

[

Pre-trained Model

@ TUNABLE ¢4

J

HEEEEEN
%(—/

Input sequence

Prompt Learning

Pre-trained Model
3% FROZEN 3%

1

[ [ ]

Input sequence

i
Al [ ]

LEARNABLE
Soft Prompt
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Learning to Prompt for Continual Learning

na and Reggio Emilia

.. training all the prompts in all tasks would incur forgetting!
e Learning to Prompt: Select a subset of prompts depending on the current
input
e Ideally, inputs that share information should also share prompts

Prompt pool o
(a shared memory space) npul

Prepend selected prompts ( Pretrained Embedding Layer )

REXTNIEN!
| )

Pretrained Transformer Encoder

AvgPool
)

Prediction

Matched pairs

0d

A key-value pair
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Learning to Prompt for Continual Learning

Prompt pool Input
(a shared memory space) npul

Prepend selected prompts ((Pretrained Embedding Layer )

I T
@ ) 100000 - 0
g 4 IS S S S !
Maxch;;i.p-a/i;s’ { Pretrained Transformer Encoder ]
DO l AvgPool
Classifier
A key-value pair T
Prediction

Each prompt P; is associated to a learnable key k;: {(Pi,ki)}%\il

Introduce a query function q(x) and select the M prompts whose key best
matches the query: Ky = argming )~ SN | diff(q(x), ks; )

Directly use the pre-trained frozen model to get the query: q(x) = fy(x)

Replay free!
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Learning to Prompt for Continual Learning Image
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More elaborate prompting mechanisms are possible

e DualPrompt, CODA-Prompt, S-Prompt to name a few.

e We can adapt even Large Pretrained Models (e.g., CLIP) - see Prompt-Fusion,
AttriCLIP

.. but is it the best we can do?

e Some preliminary works suggest that fine-tuning the whole model can
achieve higher performance even in continual
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These slides heavily borrow from a number of awesome sources. I'm really
grateful to all the people who take the time to share their knowledge on this
subject with others.

In particular:

e De Lange, M, Aljundi, R, Masana, M,, Parisot, S,, Jia, X, Leonardis, A, ... &
Tuytelaars, T. (2021). A continual learning survey: Defying forgetting in
classification tasks. IEEE transactions on pattern analysis and machine
intelligence, 44(7), 3366-3385.
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e Wang, L, Zhang, X, Su, H., & Zhu, J. (2023). A comprehensive survey of
continual learning: Theory, method and application. arXiv preprint
arXiv:2302.00487.
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