

International Summer School on Machine Vision Padova, Italy - September 4-8, 2023

Towards embodied multi-modal video understanding

Ivan Laptev

@MBZUAI

Computer Vision in 2023

Flamingo: a Visual Language Model for Few-Shot Learning. Alayrac et al., NeurIPS 2022 Input Image Edited Image

"Two kissing parrots"

Imagic: Text-Based Real Image Editing with Diffusion Models. Kawar et al. 2023 arXiv:2210.09276

Reconstructing Hand-Object Interactions in the Wild, Cao et al., CVPR 2021

Vid2Seq: Large-Scale Pretraining of a Visual Language Model for Dense Video Captioning, Yang et al., CVPR 2023

Computer Vision back in 2000

Object Recognition

Columbia Object Image Library (COIL-20), Nene et al., 1996

Action recognition

Aerobics dataset: Bobick and Davis, TPAMI 2001

Video and action recognition in retrospective

Video and action recognition in retrospective

Representations for video understanding

PhD: Local Spatio-Temporal Image Features for Motion Interpretation (Laptev 2004, KTH, Stockholm)

Laptev and Lindeberg ICCV 2003

Space-time interest points

Representations for video understanding

PhD: Local Spatio-Temporal Image Features for Motion Interpretation (Laptev 2004, KTH, Stockholm)

Laptev and Lindeberg ICCV 2003

Laptev et al., CVPR 2008, Marszalek et al., CVPR 2009

P 2017 Helmholtz Prize for fundamental contributions in Computer Vision

Video and action recognition in retrospective

10100

Script-based video annotation

- Scripts available for >500 movies (no time synchronization) www.dailyscript.com, www.movie-page.com, www.weeklyscript.com ...
- Subtitles (with time info.) are available for the most of movies
- Can transfer time to scripts by text alignment

Scripts as weak supervision

Challenges:

- Imprecise temporal localization
- No explicit spatial localization

Constrained text-video assignment

[Bojanowski, Lajugie, Grave, Bach, Laptev, Ponce, Schmid 2015]

More data: Narrated instructional videos

Don't jack your car without loosening the nuts!

Going WikiHow scale

Step 1: Scrap ~130K tasks from WikiHow

Examples of scrapped tasks How to De Healthy How to Cook Quinoa in a Rice Cooker How to Sew an Apron How to Break a Chain How to April Fool your Girlfriend

Step 2: Filter out non-visual tasks

HowTo100M dataset

[Miech, Zhukov, Alayrac, Tapaswi, Laptev and Sivic, ICCV 2019]

HowTo100M dataset: Examples

two stitches on two and we'll slip stitch

two stitches on two and we'll slip stitch

by skipping the first three stitches

stitch and just going to Mariel all the way

garlic no Camino the garlic powder

a little black pepper and some sea salt

mark this so that I know when I cut

running length they have a consistent

of wood clamp together chisel out

this is an inch and a half from the edge

any repair be sure you've unplugged

charging properly of our reading

[Miech, Zhukov, Alayrac, Tapaswi, Laptev and Sivic, ICCV 2019]

Video description datasets

Dataset	Clips	Captions	Videos	Duration	Source	Year
Charades [42]	10k	16k	10,000	82h	Home	2016
MSR-VTT [52]	10k	200k	7,180	40h	Youtube	2016
YouCook2 [61]	14k	14k	2,000	176h	Youtube	2018
EPIC-KITCHENS [5]	40k	40k	432	55h	Home	2018
DiDeMo [11]	27k	41k	10,464	87h	Flickr	2017
M-VAD [46]	49k	56k	92	84h	Movies	2015
MPII-MD [37]	69k	68k	94	41h	Movies	2015
ANet Captions [22]	100k	100k	20,000	849h	Youtube	2017
TGIF [23]	102k	126k	102,068	103h	Tumblr	2016
LSMDC [38]	128k	128k	200	150h	Movies	2017
How2 [39]	185k	185k	13,168	298h	Youtube	2018
HowTo100M	136M	136M	1.221M	134,472h	Youtube	2019

[Miech, Zhukov, Alayrac, Tapaswi, Laptev and Sivic, ICCV 2019]

Learning joint text-video embedding

fresh herbs maybe some oregano

Time

spinachs what's
 the name

Time

keep it simple you
just want to add

fresh herbs maybe some oregano

you can add cilantro basil they give

give it a couple more tosses

Learning joint text-video embedding

Our formulation: MIL-NCE

Our formulation: MIL-NCE

$$\max_{f,g} \sum_{i=1}^{n} \log \left(\frac{\sum\limits_{(x,y)\in\mathcal{P}_{i}} e^{f(x)^{\top}g(y)}}{\sum\limits_{(x,y)\in\mathcal{P}_{i}} e^{f(x)^{\top}g(y)} + \sum\limits_{(x',y')\sim\mathcal{N}_{i}} e^{f(x')^{\top}g(y')}} \right)$$

Bag of positive candidate pairs

Our formulation: MIL-NCE

$$\max_{f,g} \sum_{i=1}^{n} \log \left(\frac{\sum_{(x,y)\in\mathcal{P}_{i}} e^{f(x)^{\top}g(y)}}{\sum_{(x,y)\in\mathcal{P}_{i}} e^{f(x)^{\top}g(y)} + \sum_{(x',y')\sim\mathcal{N}_{i}} e^{f(x')^{\top}g(y')}} \right)$$
Negative video-narration pairs

Video-Text model architecture

32 frames @ 10 fps

YouCook2 Zero-Shot Text-to-Video retrieval

[1] A. Miech, D. Zhukov, J.-B. Alayrac, M. Tapaswi, I. Laptev, J. Sivic, HowTo100M: Learning a Text-Video Embedding by Watching Hundred Million Narrated Video Clips, in ICCV, 2019.

Action recognition: comparison to self-supervised video representations

Comparison to fully-supervised

representations

[1] A. Miech, D. Zhukov, J.-B. Alayrac, M. Tapaswi, I. Laptev, J. Sivic, HowTo100M: Learning a Text-Video Embedding by Watching Hundred Million Narrated Video Clips, in ICCV, 2019.

Video search by text

https://howto100m.inria.fr

Video and action recognition in retrospective

Zero-Shot Video Question Answering

[Yang, Miech, Sivic, Laptev and Schmid, NeurIPS 2022]

FrozenBiLM: Training

[Yang, Miech, Sivic, Laptev and Schmid, NeurIPS 2022]
FrozenBiLM: Zero-Shot VideoQA

Input prompt engineering

Open-ended VideoQA Multiple-choice VideoQA Video-conditioned fill-in-the-blank task "[CLS] Question: <Question>? Answer: [MASK]. [SEP]"
"[CLS] Question: <Question>? Is it '<Answer Candidate>'? [MASK]. [SEP]"
"[CLS] <Sentence with a [MASK] token>. [SEP]"

[Yang, Miech, Sivic, Laptev and Schmid, NeurIPS 2022]

FrozenBiLM: Zero-Shot SOTA comparison

Method	Training Data	Fill-in-the-blank LSMDC	iVQA M	ISRVTT-QA	Open-ende MSVD-QA A	ed ActivityNet-QA	A TGIF-QA	Multiple How2QA	-choice TVQA
Random		0.1	0.1	0.1	0.1	0.1	0.1	25	20
CLIP ViT-L/14 [75] 400M image-texts	1.2	9.2	2.1	7.2	1.2	3.6	47.7	26.1
Just Ask [108]	HowToVQA69M + WebVidVQA3M	_	<u>13.3</u>	5.6	13.5	12.3	_	<u>53.1</u>	—
Reserve [116]	YT-Temporal-1B	31.0		5.8					
FrozenBiLM (Ours)) WebVid10M	51.5	26.8	16.7	33.8	25.9	41.9	58.4	59.7

[Yang, Miech, Sivic, Laptev and Schmid, NeurIPS 2022]

Vid2Seq: Large-Scale Pretraining of a Visual Language Model for Dense Video Captioning

Goal: Use unlabeled narrated videos to train dense video captioning model

https://antoyang.github.io/vid2seq.html

[Yang, Nagrani, Seo, Miech, Pont-Tuset, Laptev, Sivic and Schmid, CVPR 2023]

Vid2Seq model

https://antoyang.github.io/vid2seq.html

[Yang, Nagrani, Seo, Miech, Pont-Tuset, Laptev, Sivic and Schmid, CVPR 2023]

GT: A man walks up to parallel bars while spectators, competitors, and officials are in the background.

Vid2Seq: A man walks up to a set of uneven bars.

Vid2Seq: Trim off the excess fat of chicken breast and cut it into halves.

Is video understanding getting solved?

Park et al., CVPR19

A small group of people are seen riding around in bumper cars and bumping into one another. The girl continues riding around the bumper car while others watch on the side. The girl finishes and walks away.

Yang et al., CVPR 2023

ViFi-CLIP Rasheed et al., 2023

With large-scale data and unsupervised training modern methods are getting excellent at associating video with language.

Open challenges in vision

What are effects of certain actions on a given scene?

What happens if...?

...shaking an apple tree

...pulling tablecloth

What actions are required?

What actions are required?

What actions are required?

Summary

History Aware Multimodal Transformer for Vision-and-Language Navigation, S. Chen, P.-L. Guhur, C. Schmid and I. Laptev; *in Proc. NeurIPS 2021*

Object Goal Navigation with Recursive Implicit Maps, S. Chen, T. Chabal, I. Laptev and C. Schmid; *In submission 2023* Vision and language **navigation**

 Variations of a Task

 Training Episode (Seen Variation)
 Testing Episode (Unseen Variation)

Press the white button, then Press push the green button, then tappi push the gray one. then

Press the darker blue button, before tapping on the green button and then the lighter blue button.

Instruction-driven history-aware policies for robotic manipulations, P.-L. Guhur, S. Chen, R. Garcia, M. Tapaswi, I. Laptev and C. Schmid; *in Proc. CoRL 2022*

Robust visual sim-to-real transfer for robotic manipulation, R. Garcia, R. Strudel, S. Chen, E. Arlaud, I. Laptev and C. Schmid. *In submission 2023* Vision and language **manipulation**

Summary

History Aware Multimodal Transformer for Vision-and-Language Navigation, S. Chen, P.-L. Guhur, C. Schmid and I. Laptev; *in Proc. NeurIPS 2021*

Object Goal Navigation with Recursive Implicit Maps, S. Chen, T. Chabal, I. Laptev and C. Schmid; *In submission 2023* Vision and language **navigation**

Variations of a TaskTraining Episode
(Seen Variation)Feen VariationFress the white button, the
push the green button, the

Instruction-driven history-aware policies for robotic manipulations, P.-L. Guhur, S. Chen, R. Garcia, M. Tapaswi, I. Laptev and C. Schmid; *in Proc. CoRL 2022*

Robust visual sim-to-real transfer for robotic manipulation, R. Garcia, R. Strudel, S. Chen, E. Arlaud, I. Laptev and C. Schmid. *In submission 2023* Vision and language **manipulation**

History Aware Multimodal Transformer for Vision-and-Language Navigation

Shizhe Chen Pierre-Louis Guhur Cordelia Schmid Ivan Laptev NeurIPS 2021

Webpage:

https://cshizhe.github.io/projects/vln_hamt.html

VLN Challenges: Modeling history

DILU S-CYC VIEW

Keeping track of the navigation state Environment understanding Instruction grounding

Turn left and continue

up the st Go straig the bedra
Adopt a fixed-size recurrent unit to encode the whole history the right past the bed.
Turn right again and go through the closet.

Continue straight, into the bathroom.

Wait right there, in front of the mirror.

ranoranne nnage

Our Proposed Model: HAMT

History Aware Multimodal Transformer (HAMT)

A fully transformerbased architecture for multimodal decision making

Our Proposed Model: HAMT

Long-horizon history modelling Learn dependency of all panoramic observations and actions in history sequence End-to-end optimization for visual representation Fully transformer-based architecture allows efficient training

PROBLEMS

- Computationally expensive to encode all panoramas
 - K views, T steps $\rightarrow O(K^2T^2)$
- The action prediction task alone might be insufficient to learn generalizable models

HAMT: Hierarchical History Encoding

ViT for single view image encoding Panoramic Transformer for spatial relation encoding within panorama Temporal Transformer for temporal relation encoding across panoramas

Experiments: Comparison with SoTA

HAMT outperforms state of the art on all datasets

Experiments: Ablation

How important is the history encoding?

- Recurrent: a fixed-size vector to encode the whole history
- Temporal-only: select only one view per panorama to improve efficiency
- Hierarchical: hierarchically encode all panoramas

Limitations of HAMT

Sequence no structure of the house Local actions hard to backtrack many steps

Navigable locations

Fine-grained representation

→ Action

Improving HAMT with Structured Memory

DUET: Experimental Results

REVERIE dataset

	SR	SPL	RGS	RGSPL
HAMT	30.40	26.67	14.88	13.08
DUET	52.51	36.06	31.88	22.06

• SOON dataset

Split	Methods	TL	OSR↑	SR↑	SPL↑	RGSPL↑
Val	GBE [8]	28.96	28.54	19.52	13.34	1.16
Unseen	DUET (Ours)	36.20	50.91	36.28	22.58	3.75
Test	GBE [8]	27.88	21.45	12.90	9.23	0.45
Unseen	DUET (Ours)	41.83	43.00	33.44	21.42	4.17

• Winner of VLN Challenges hosted in Human Interaction for Robotics Navigation Workshop at ICCV 2021

Cannot turn right. Back Track

Object Goal Navigation with Recursive Implicit Maps

Shizhe Chen Thomas Chabal Cordelia Schmid Ivan Laptev In submission 2023

Object Navigation model with Recursive Implicit Map

Object Navigation model with Recursive Implicit Map

	Memory size	SR	SPL	SoftSPL
Recurrent state	$1 \times d$ $T \times d$	38.95 44.51	11.09	16.35
Recursive implicit map	$h \times w \times d$	47.74	14.17 15.12	20.51

Object Goal Navigation with Recursive Implicit Maps

Shizhe Chen, Thomas Chabal, Ivan Laptev and Cordelia Schmid

Examples in simulation: successful cases

Real world examples

Summary

Variations of a TaskTraining Episode
(seen Variation)Testing Episode
(Unseen Variation)Image: Seen VariationImage: Seen Var

tapping on the green button and

then the lighter blue button

push the green button, then

nush the gray one

Instruction-driven history-aware policies for robotic manipulations, P.-L. Guhur, S. Chen, R. Garcia, M. Tapaswi, I. Laptev and C. Schmid; *in Proc. CoRL 2022*

Robust visual sim-to-real transfer for robotic manipulation, R. Garcia, R. Strudel, S. Chen, E. Arlaud, I. Laptev and C. Schmid. *In submission 2023* Vision and language **manipulation**

Instruction-driven History-aware Policies for Robotic Manipulation

Shizhe Chen¹

Makarand Tapaswi^{1,2}

Ivan Laptev¹

Cordelia Schmid¹

¹Inria, École normale supérieure, CNRS, PSL Research University, Paris, France, ²IIIT Hyderabad, India

Project page: https://guhur.github.io/hiveformer/

Challenges

Many tasks and their variations

1.

Current observation is insufficient

Precision can be crucial

4.

Explicit state recovery is too difficult

How to address these challenges?

History-aware instruction-conditioned multi-view transformer

Behavior Cloning loss for training; Single and Multitask training

Evaluation: RLBench tasks

100 hand-designed tasks Multi-view RGB-D images Franka Emika Panda 7 DoF arm Text description for each task

> Select 74 tasks we could simulate Evaluate in single and multi-task settings

(Task text descriptions are not needed)

James, S., Ma, Z., Arrojo, D. R., & Davison, A. J. (2020). RLBench: The robot learning benchmark & learning environment. *IEEE Robotics and Automation Letters*, *5*(2), 3019-3026.

Evaluation: RLBench task variations

Push Buttons

Water Plants

Variations of a Task

Training Episode (Seen Variation)

Press the white button, then push the green button, then push the gray one.

Press the darker blue button, before tapping on the green button and then the lighter blue button.

Unseen sequence of colors during training

Evaluate on *unseen task variations* Task text descriptions become crucial

	Visual Tokens	Point Clouds	Gripper Position	Multi- View	History	Attn	Mask Obs	SR
R 1	×	×	×	×	×	×	×	72.9 ± 4.1
R2	Channel	×	×	\checkmark	×	Self	×	73.1 ± 4.5
R3	Channel	\checkmark	×	\checkmark	×	Self	×	77.1 ± 5.8
R4	Channel	\checkmark	\checkmark	\checkmark	×	Self	×	78.1 ± 5.8
R5	Channel	\checkmark	\checkmark	\checkmark	\checkmark	Self	×	81.8 ± 5.2
R6	Channel	\checkmark	\checkmark	\checkmark	\checkmark	Self	\checkmark	82.3 ± 5.3
R 7	Patch	\checkmark	\checkmark	\checkmark	\checkmark	Self	\checkmark	84.4 ± 6.4
R 8	Patch	\checkmark	\checkmark	\checkmark	\checkmark	Cross	\checkmark	88.4 ± 4.9

Transformer with multi-view, depth and gripper: +5.2%

w/ vs. w/o history: +3.7% Patch vs. channel tokens: +2.1% Cross- vs. Self-Attention: +4% Overall: +15.5%

		Visual Tokens	Point Clouds	Gripper Position	Multi- View	History	Attn	Mask Obs	SR	
	R 1	×	×	×	×	×	×	×	72.9 ± 4.1	
C1 C2 C3	R2	Channel	×	×	\checkmark	×	Self	×	73.1 ± 4.5	
	R3	Channel	\checkmark	×	\checkmark	×	Self	×	77.1 ± 5.8	+5.2
	R4	Channel	\checkmark	\checkmark	\checkmark	×	Self	×	78.1 ± 5.8	%
	R5	Channel	\checkmark	\checkmark	\checkmark	\checkmark	Self	×	81.8 ± 5.2	
	R6	Channel	\checkmark	\checkmark	\checkmark	\checkmark	Self	\checkmark	82.3 ± 5.3	
	R 7	Patch	\checkmark	\checkmark	\checkmark	\checkmark	Self	\checkmark	84.4 ± 6.4	
	R 8	Patch	\checkmark	\checkmark	\checkmark	\checkmark	Cross	\checkmark	88.4 ± 4.9	

Transformer with multi-view, depth and gripper: +5.2% w/ vs. w/o history: +3.7% Patch vs. channel tokens: +2.1% Cross- vs. Self-Attention: +4%

Overall: +15.5%

	Visual Tokens	Point Clouds	Gripper Position	Multi- View	History	Attn	Mask Obs	SR	
R 1	×	×	×	×	×	×	×	72.9 ± 4.1	
R2	Channel	×	×	\checkmark	×	Self	×	73.1 ± 4.5	
R3	Channel	\checkmark	×	\checkmark	×	Self	×	77.1 ± 5.8	
R4	Channel	\checkmark	\checkmark	\checkmark	×	Self	×	78.1 ± 5.8	
R5	Channel	\checkmark	\checkmark	\checkmark	\checkmark	Self	×	81.8 ± 5.2	+3./
R6	Channel	\checkmark	\checkmark	\checkmark	\checkmark	Self	\checkmark	82.3 ± 5.3	%
R 7	Patch	\checkmark	\checkmark	\checkmark	\checkmark	Self	\checkmark	84.4 ± 6.4	
R 8	Patch	\checkmark	\checkmark	\checkmark	\checkmark	Cross	\checkmark	88.4 ± 4.9	

Transformer with multi-view, depth and gripper: +5.2%

w/ vs. w/o history: +3.7% Patch vs. channel tokens: +2.1% Cross- vs. Self-Attention: +4% Overall: +15.5%

	Visual Tokens	Point Clouds	Gripper Position	Multi- View	History	Attn	Mask Obs	SR	
R	81 ×	×	×	×	×	×	×	72.9 ± 4.1	
R	2 Channel	×	×	\checkmark	×	Self	×	73.1 ± 4.5	
R	3 Channel	\checkmark	×	\checkmark	×	Self	×	77.1 ± 5.8	
R	4 Channel	\checkmark	\checkmark	\checkmark	×	Self	×	78.1 ± 5.8	
R	5 Channel	\checkmark	\checkmark	\checkmark	\checkmark	Self	×	81.8 ± 5.2	
-R	Channel	\checkmark	\checkmark	\checkmark	\checkmark	Self	\checkmark	82.3 ± 5.3	
/ R	Patch	\checkmark	\checkmark	\checkmark	\checkmark	Self	\checkmark	84.4 ± 6.4	+2.1
R	R8 Patch	\checkmark	\checkmark	\checkmark	\checkmark	Cross	\checkmark	88.4 ± 4.9	%

Transformer with multi-view, depth and gripper: +5.2%

w/ vs. w/o history: +3.7% Patch vs. channel tokens: +2.1% Cross- vs. Self-Attention: +4% Overall: +15.5%

	Visual Tokens	Point Clouds	Gripper Position	Multi- View	History	Attn	Mask Obs	SR	
R 1	×	×	×	×	×	×	×	72.9 ± 4.1	
R2	Channel	×	×	\checkmark	×	Self	×	73.1 ± 4.5	
R3	Channel	\checkmark	×	\checkmark	×	Self	×	77.1 ± 5.8	
R4	Channel	\checkmark	\checkmark	\checkmark	×	Self	×	78.1 ± 5.8	
R5	Channel	\checkmark	\checkmark	\checkmark	\checkmark	Self	×	81.8 ± 5.2	
R6	Channel	\checkmark	\checkmark	\checkmark	\checkmark	Self	\checkmark	82.3 ± 5.3	
R 7	Patch	\checkmark	\checkmark	\checkmark	\checkmark	Self	\checkmark	84.4 ± 6.4	
R8	Patch	\checkmark	\checkmark	\checkmark	\checkmark	Cross	\checkmark	88.4 ± 4.9	▲ +4 %

Transformer with multi-view, depth and gripper: +5.2%

Cross-Attention

w/ vs. w/o history: +3.7% Patch vs. channel tokens: +2.1%

Cross- vs. Self-Attention: +4%

Overall: +15.5%

	Visual Tokens	Point Clouds	Gripper Position	Multi- View	History	Attn	Mask Obs	SR	
R 1	×	×	×	×	×	×	×	72.9 ± 4.1	
R2	Channel	×	×	\checkmark	×	Self	×	73.1 ± 4.5	
R3	Channel	\checkmark	×	\checkmark	×	Self	×	77.1 ± 5.8	
R4	Channel	\checkmark	\checkmark	\checkmark	×	Self	×	78.1 ± 5.8	+15.5
R5	Channel	\checkmark	\checkmark	\checkmark	\checkmark	Self	×	81.8 ± 5.2	%
R6	Channel	\checkmark	\checkmark	\checkmark	\checkmark	Self	\checkmark	82.3 ± 5.3	
R 7	Patch	\checkmark	\checkmark	\checkmark	\checkmark	Self	\checkmark	84.4 ± 6.4	
R 8	Patch	\checkmark	\checkmark	\checkmark	\checkmark	Cross	\checkmark	88.4 ± 4.9	

Transformer with multi-view, depth and gripper: +5.2% w/ vs. w/o history: +3.7% Patch vs. channel tokens: +2.1% Cross- vs. Self-Attention: +4% Overall: +15.5%

۲۰۵۶-Attentior Self-Attention پ

Results: Task variations

push the green button, then push the gray one.

(Unseen Variation)

Press the darker blue button, before tapping on the green button and then the lighter blue button.

# Demos		Pus	sh Butte	ons		Tower		
Per	Instr.	Seen	Uns	seen	Seen	Uns	seen	
Variation		Synt.	Synt.	Real	Synt.	Synt.	Real	
10	Seq.	96.4	71.1	65.7	71.6	49.8	19.4	
50	Seq.	99.4	83.1	70.9	74.3	52.1	20.6	
100	Seq.	100	86.3	74.2	77.4	56.2	24.1	

Generalization to unseen variations

Generalization to natural language extractions
Results: Task variations

push the green button, then push the gray one.

Press the darker blue button, before tapping on the green button and then the lighter blue button.

# Demos		Push Buttons		Tower			
Per	Instr.	Seen	Uns	een	Seen	Uns	een
Variation		Synt.	Synt.	Real	Synt.	Synt.	Real
10	Seq.	96.4	71.1	65.7	71.6	49.8	19.4
50	Seq.	99.4	83.1	70.9	74.3	52.1	20.6
100	Seq.	100	86.3	74.2	77.4	56.2	24.1

Generalization to unseen variations

Generalization to natural language expressions

Domain randomization

Training: simulated scenes

Testing: real scenes

Experiments for Hang Mug Task

Vision should be grounded in real actions

Vision requires models of physics and actions in the real world

Robotics requires models of vision and perception

Vision, language and robotics

Goal: learn Large Embodied Vision-Language Models (LEVLM)

Thanks to my collaborators and students

Cordelia Schmid

Francis Bach

J. Carpentier Andrew Zisserman

Aloysha Efros

Michael Black

Shizhe Chen

Antoine Miech

Q. Le Lidec

M. Tapaswi

Vijay Kumar

Karteek Alahari

Gul Varol

Yana Hasson

E. Chane-Sane Antoine Yang

A. Pashevich

Piotr Bojanowski

P.-L. Guhur

Alaa El-Nouby

Robin Strudel

M. Futeral-Peter

R. Garcia Pinel

D. Zhukov

Vincent Delaitre

J.-B. Alayrac

G. Sequin

I. Kalevatkh

Study Research About Innovate

News & events

Ranked in the Top 20 globally in AI, CV, ML and NLP THE OWNER OF THE OWNER OWNER OF THE OWNER OWNE

About Study Research Innovate News & events

Building a new lab for Embodied and Language-Aware Visual Models

Ranked in the Top 20 globally in AI, CV, ML and NLP

READ MORE	RESEARCH	SUSTAINABILITY