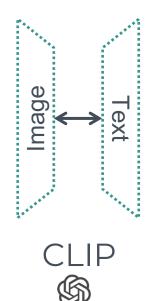
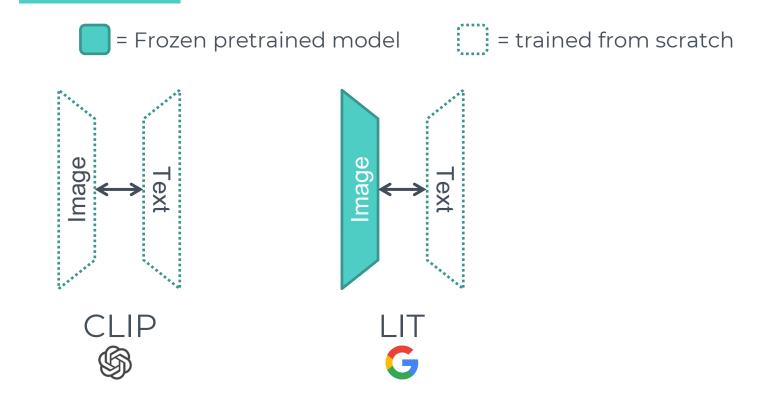
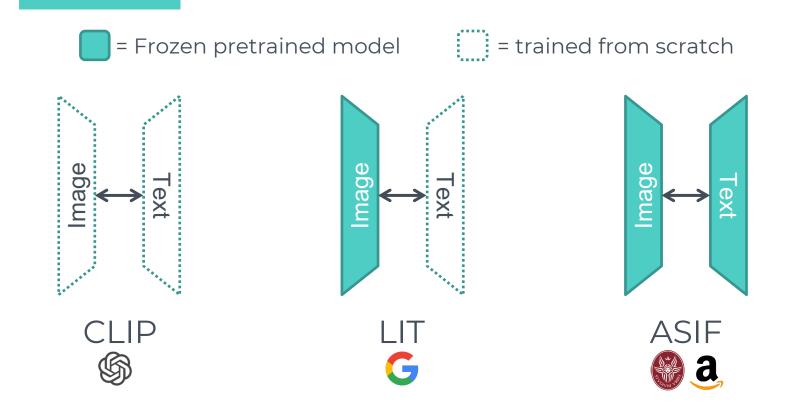
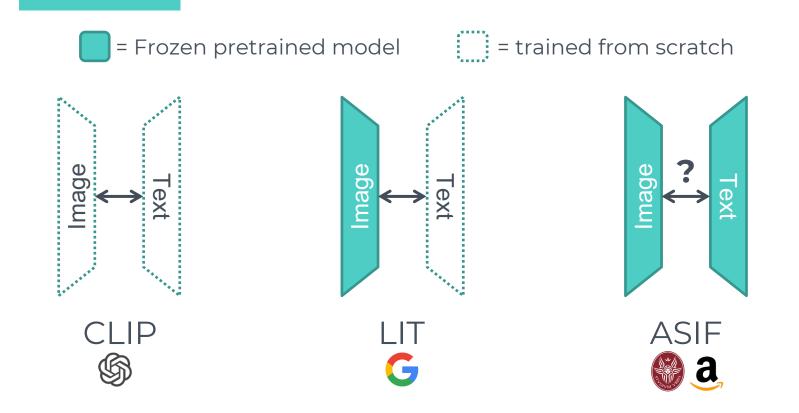

One of the sloot add peterian to van hysviis the last classeitizateionAask

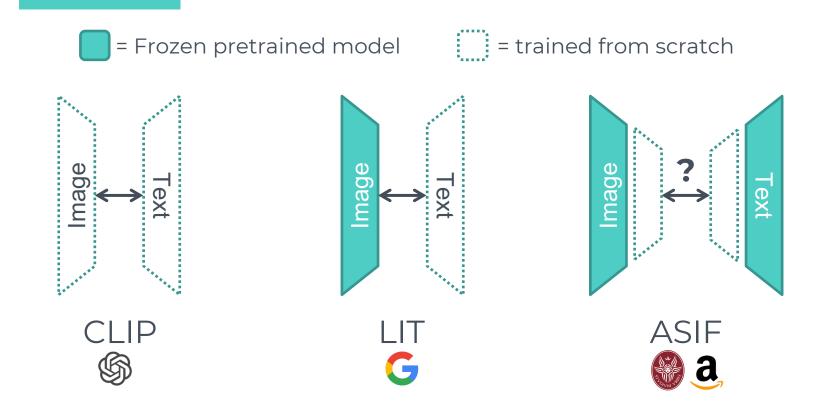
1. Contrastive pre-training

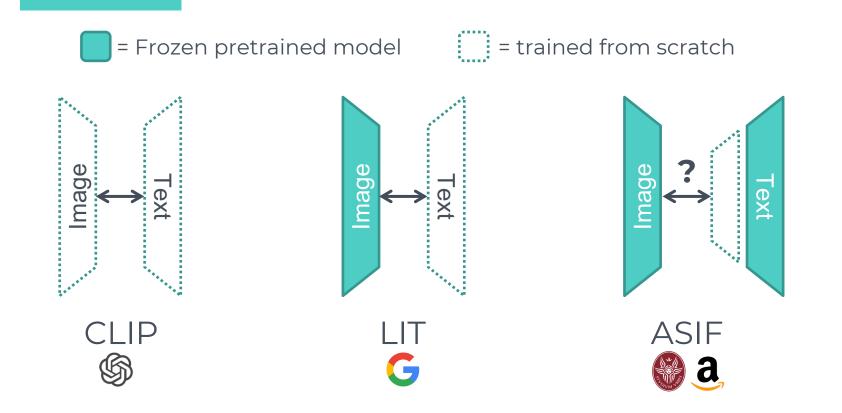

Radford, Alec, et al. "Learning transferable visual models from natural language supervision." ICML, 2021.

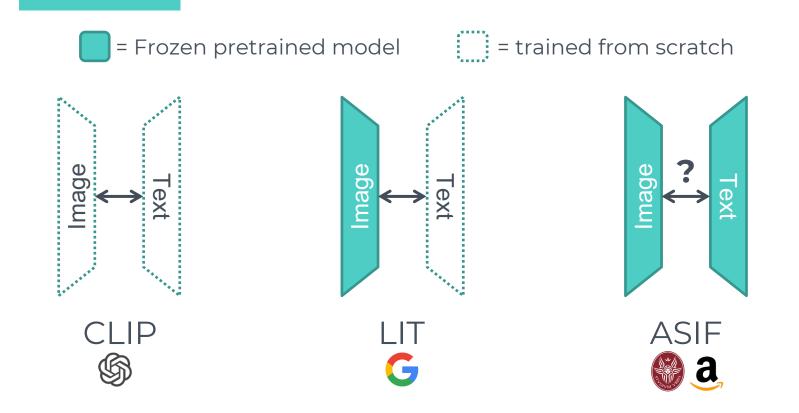

2. Create dataset classifier from label text

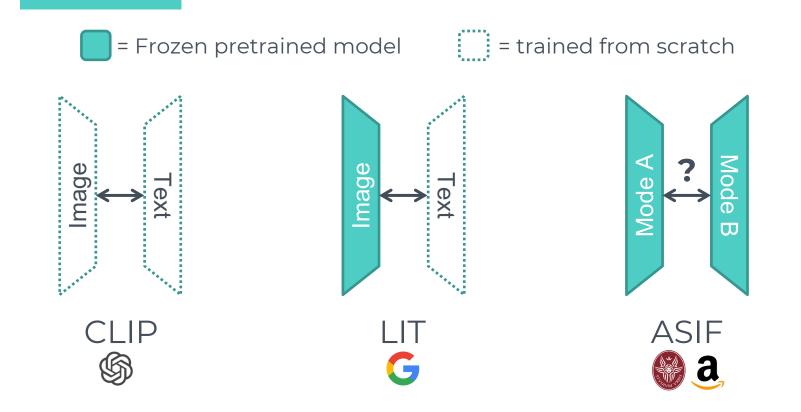



Radford, Alec, et al. "Learning transferable visual models from natural language supervision." ICML, 2021.









a green car in the forest

Captions of similar images are themselves similar

105

-0.2 0.0

0.2

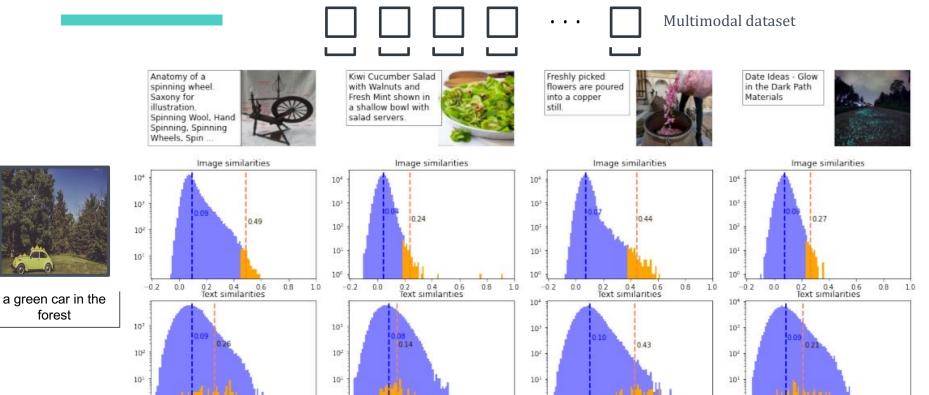
04

0.6

08 10

10

100


-0.2

00 02

0.4

0.6

0.8

105

-0.2 0.0

0.2

0.4 0.6

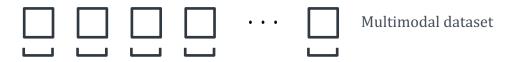
08

10

-0.2

0.0

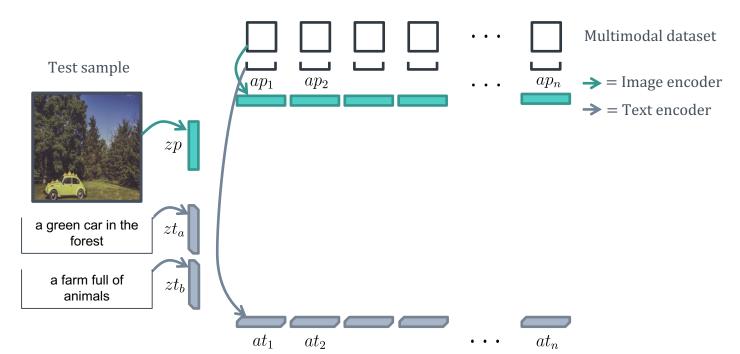
0.2

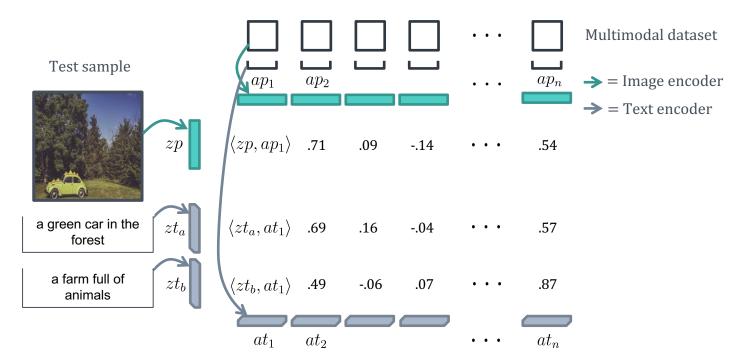

0.4

0.6

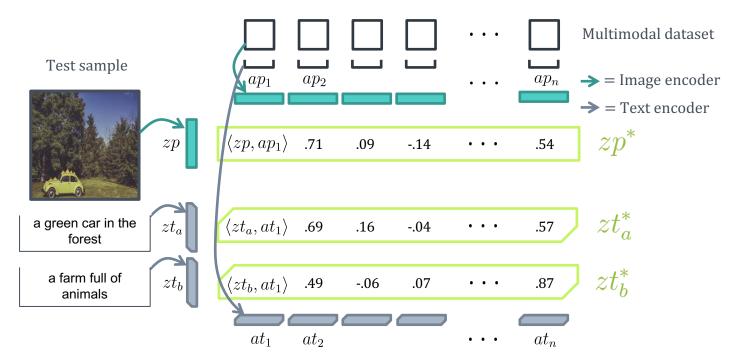
0.8 1.0

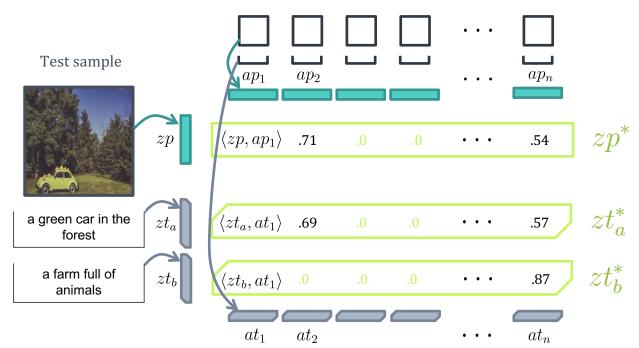
Problem: best caption for a given image

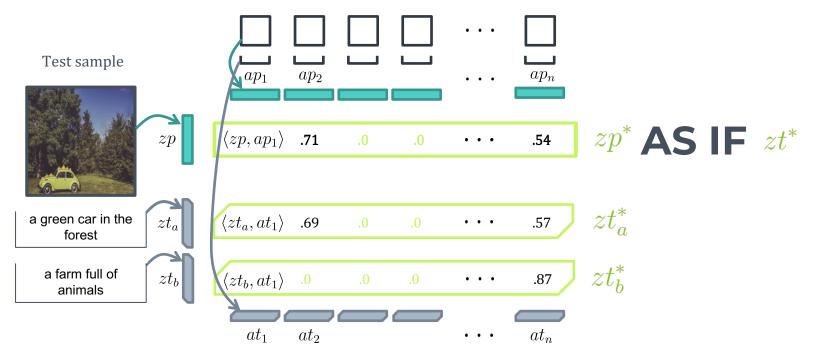

Test sample

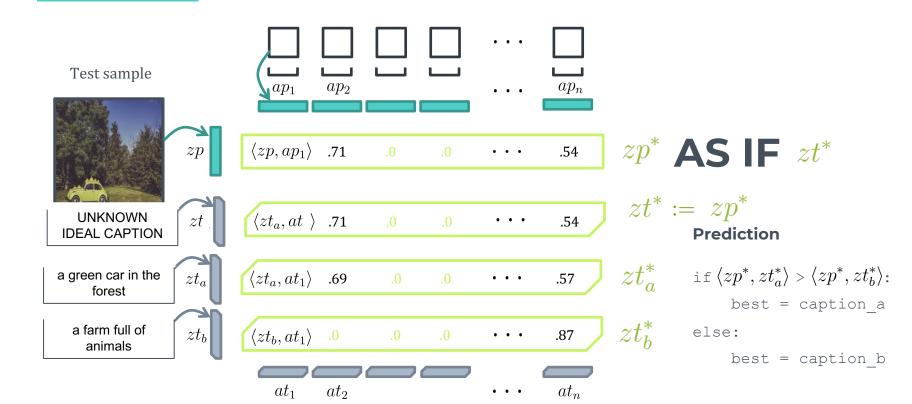

a green car in the forest

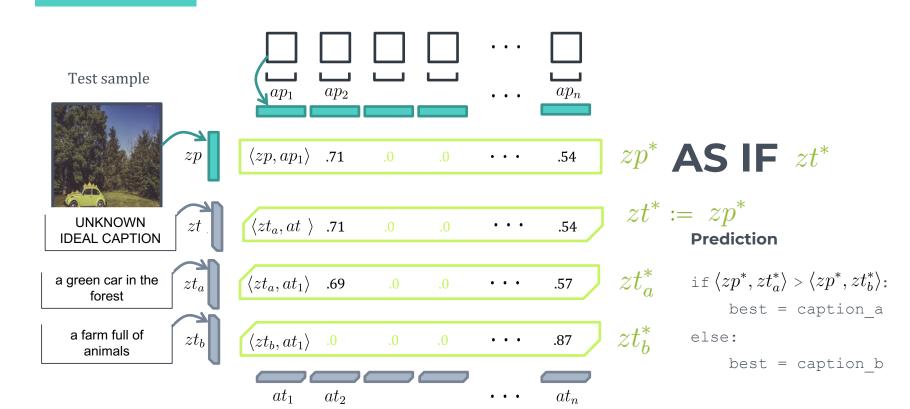
a farm full of animals


Problem: best caption for a given image


Problem: best caption for a given image


Problem: best caption for a given image


Sparse representations


Sparse representations

ASIF: coupled data turns unimodal models to multimodal without training

Our implementation

Pretrained image encoder: VITb8; DINO VITs16

-Training dataset: labeled Imagenet 22k; same unlabeled. -Learning task: supervised classification; unsupervised self-distillation -Embedding size: 768; 384

Our implementation

Pretrained image encoder: VITb8; DINO VITs16

-Training dataset: labeled Imagenet 22k; same unlabeled. -Learning task: supervised classification; unsupervised self-distillation -Embedding size: 768; 384

Pretrained text encoder: SentenceT

-Training dataset: >1B sentences scraped from the internet (Reddit, Wiki, SO, ...). -Learning task: BERT-like then contrastive with couples of sentences. -Embedding size: 768

Our implementation

Pretrained image encoder: VITb8; DINO VITs16

-Training dataset: labeled Imagenet 22k; same unlabeled. -Learning task: supervised classification; unsupervised self-distillation -Embedding size: 768; 384

Pretrained text encoder: SentenceT

-Training dataset: >1B sentences scraped from the internet (Reddit, Wiki, SO, -Learning task: BERT-like then contrastive with couples of sentences. -Embedding size: 768

Analogy collection: subset of CC12M Images and alttexts scraped from

the internet. CC12M size is 10M, we used 1.5M analogies

PERSON> was the first US president to attend a tournament in sumo's hallowed Ryogoku Kokugikan arena. (AFP photo)

Hand holding a fresh mangosteen

#jellyfish #blue #ocean #pretty Sea Turtle Wallpaper, Aquarius Aesthetic, Blue Aesthetic Pastel, The Adventure Zone, Capricorn And ~PERSON>, Life Aquatic, Ocean Life, Jellyfish, Marine Life

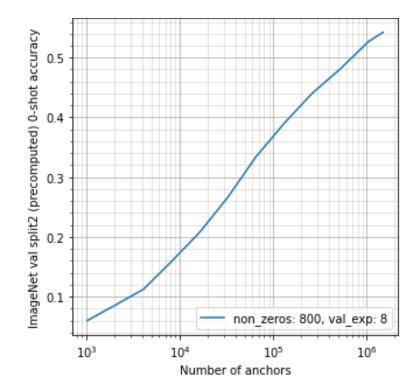
Memory impact?

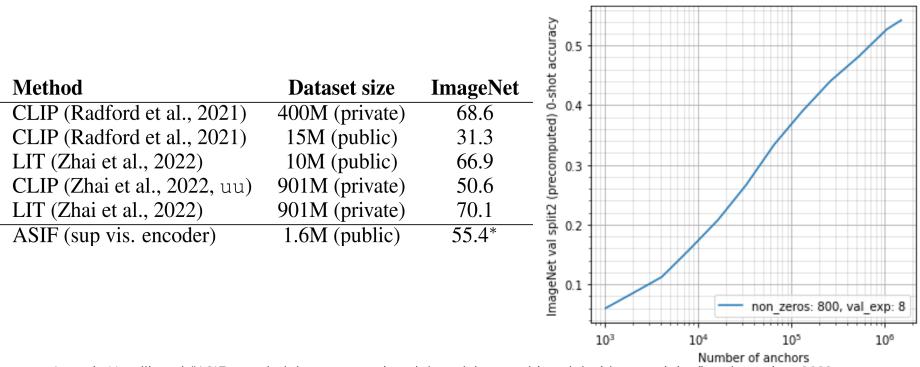
We have to keep all the embeddings of the analogy collection in memory

Memory impact?

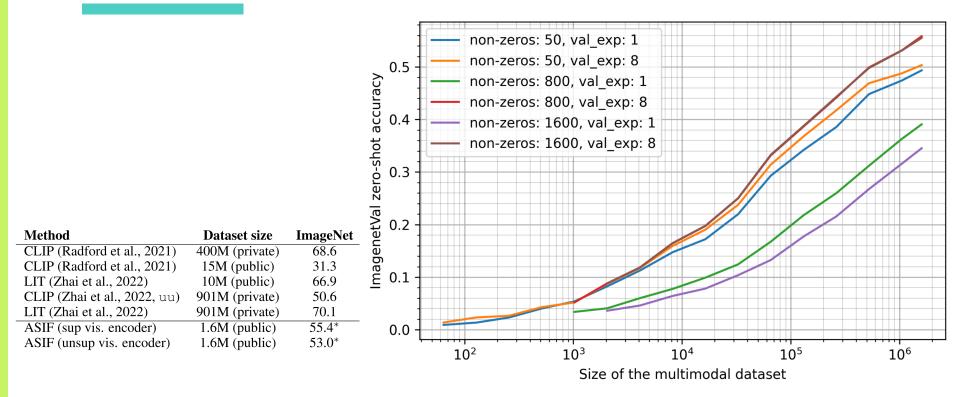
We have to keep all the embeddings of the analogy collection in memory, but:

We can compress embeddings, e.g. by quantization.

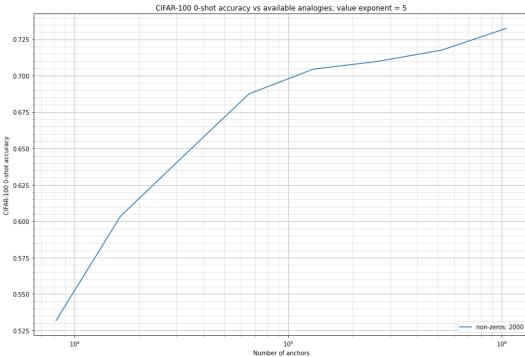

Memory impact?


We have to keep all the embeddings of the analogy collection in memory, but:

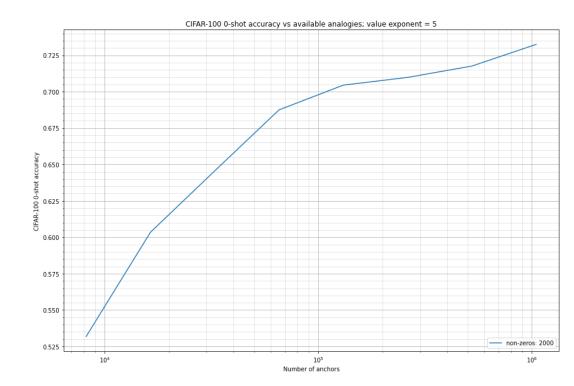
- We can compress embeddings, e.g. by quantization.
- If we want a specialized model, we can perform fine pruning


How can we do this?

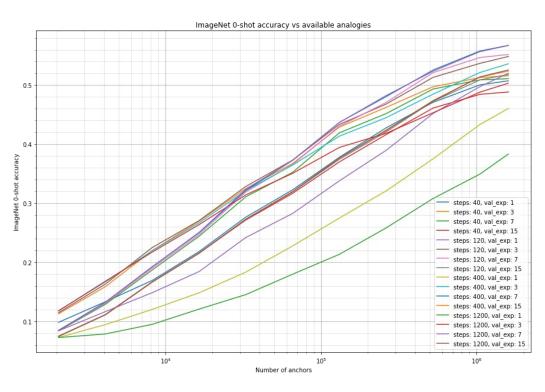
2. Benefits of this approach



Method	Dataset size	ImageNet	CIFAR100	Pets	ImageNet v2
CLIP (Radford et al., 2021)	400M (private)	68.6	68.7	88.9	-
CLIP (Radford et al., 2021)	15M (public)	31.3	-	-	-
LIT (Zhai et al., 2022)	10M (public)	66.9	-	-	-
CLIP (Zhai et al., 2022, uu)	901M (private)	50.6	47.9	70.3	43.3
LIT (Zhai et al., 2022)	901M (private)	70.1	70.9	88.1	61.7
ASIF (sup vis. encoder)	1.6M (public)	55.4*	63.3	71.5	45.6


Test dataset: CIFAR 100

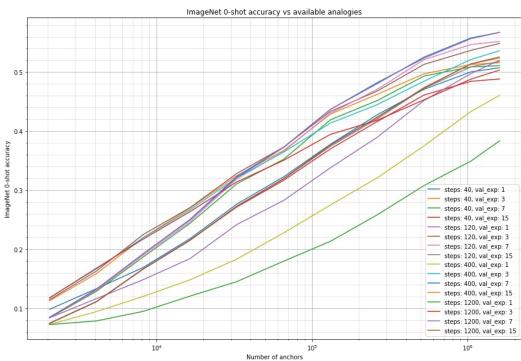
Model	Accuracy	Image-text couples seen
CLIP (VITb16)	68.7	400M
LIT (VITb16)	70.9	900M
ASIF (VITb16)	73.3	1.5M


Test dataset: CIFAR 100

55% accuracy with just 10,000 imagetext couples

Test dataset: ImageNet

Model	Accuracy	Image-text couples seen			
CLIP (VITb16)	68.6	400M			
LIT (VITb16)	70.1	900M			
ASIF (VITb16)	57.0	1.5M			



Test dataset: ImageNet

Hyperparameters relevance:

nonzeros (steps)

In. product exponent

Test dataset: ImageNetv2

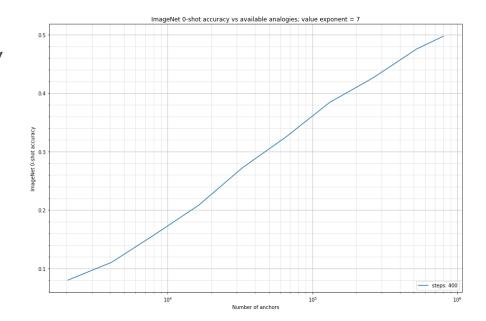
Test dataset: PETS

Model	Accuracy	Image-text couples seen
CLIP (VITb16)	43.3*	900M*
LIT (VITb16)	61.7	900M
ASIF (VITb16)	47.1	1.5M

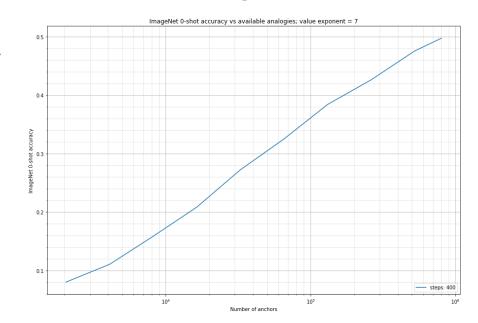
Model	Accuracy	Image-text couples seen
CLIP (VITb16)	70.3*	900M*
LIT (VITb16)	88.1	900M
ASIF (VITb16)	72.9	1.5M

ASIF with DINO visual encoder remains effective.

Method	Dataset size	ImageNet	CIFAR100	Pets	ImageNet v2
CLIP (Radford et al., 2021)	400M (private)	68.6	68.7	88.9	-
CLIP (Radford et al., 2021)	15M (public)	31.3	-	-	-
LIT (Zhai et al., 2022)	10M (public)	66.9	-	-	-
CLIP (Zhai et al., 2022, uu)	901M (private)	50.6	47.9	70.3	43.3
LIT (Zhai et al., 2022)	901M (private)	70.1	70.9	88.1	61.7
ASIF (sup vis. encoder)	1.6M (public)	55.4*	63.3	71.5	45.6


Antonio Norelli et al. "ASIF: coupled data turns unimodal models to multimodal without training" under review, 2022.

ASIF with DINO visual encoder remains effective.


Method	Dataset size	ImageNet	CIFAR100	Pets	ImageNet v2
CLIP (Radford et al., 2021)	400M (private)	68.6	68.7	88.9	-
CLIP (Radford et al., 2021)	15M (public)	31.3	-	-	-
LIT (Zhai et al., 2022)	10M (public)	66.9	-	-	-
CLIP (Zhai et al., 2022, uu)	901M (private)	50.6	47.9	70.3	43.3
LIT (Zhai et al., 2022)	901M (private)	70.1	70.9	88.1	61.7
ASIF (sup vis. encoder)	1.6M (public)	55.4*	63.3	71.5	45.6
ASIF (unsup vis. encoder)	1.6M (public)	53.0*	46.5	74.7	45.9

Antonio Norelli et al. "ASIF: coupled data turns unimodal models to multimodal without training" under review, 2022.

 Performance barely deteriorates with DINO encoder.

- Performance barely deteriorates with DINO encoder.
- 50% accuracy on ImageNet with 800k couples.

Highly interpretable representations

Query image A photo of a triumphal arch Mosque Mosque

The Arch of Titus, Rome

*×

AC Milan's players celebrate on a bus after winning the championship

Photo looking up at the Arch of Titus

The faded triumph of <PERSON>'s Arch in Benevento

The triumphal arch of Volubilis glowing in the sun

The arch at Valley Forge

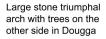
Neoclassical Architecture Painting - A View through Three Arches of the ...

The Arch of Titus in Rome, Italy. Rome landmark.

The Arch of Septimus Severus, Rome

The Arch of Constantine and the <PERSON> in Rome.

<PERSON> and warrior on a chariot. <PERSON> bronze statue atop ...


Arch of Constantine near the Colosseum in Rome, Italy stock photography

The Arch of Trajan: all what you need to know

The Arch of Triumph or Arch of <PERSON>, Palmyra, Syria, 2005

n III

Ruins of the Roman triumphal arch at Palmyra as photographed in 2006.

A watercolor sketch or illustration of the Brandenburg gate

Model of the Arch of Constantine Probably by <PERSON>

The Arch of <PERSON> and the aqueduct

A picture of one of the most famous German landmarks: ...

Damage to the Umavvad

Mosque in Damascus,

Black and white shot of

architectural columns in

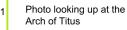
Syria

the park

11-AX

Temple of Hatshepsut, Valley of the Kings

Highly interpretable representations



Query image X^{*} A photo of a mosque

The Arch of Titus, Rome

AC Milan's players celebrate on a bus after winning the championship

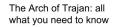
The faded triumph of <PERSON>'s Arch in Benevento

The triumphal arch of Volubilis glowing in the sun

0.80

The arch at Valley Forge

Neoclassical Architecture Painting - A View through Three Arches of the ...


The Arch of Titus in Rome, Italy. Rome landmark.

The Arch of Septimus Severus, Rome

The Arch of Constantine and the <PERSON> in Rome. <PERSON> and warrior

on a chariot. <PERSON> bronze statue atop ...

Arch of Constantine near the Colosseum in Rome, Italy stock photography

The Arch of Triumph or Arch of <PERSON>, Palmyra, Syria, 2005

Large stone triumphal arch with trees on the other side in Dougga

Ruins of the Roman triumphal arch at Palmyra as photographed in 2006.

A watercolor sketch or illustration of the Brandenburg gate

Model of the Arch of Constantine Probably by <PERSON>

The Arch of <PERSON> and the aqueduct

A picture of one of the most famous German landmarks: ...

Damage to the Umayyad Mosque in Damascus, Syria

Black and white shot of architectural columns in the park

Temple of Hatshepsut, Valley of the Kings

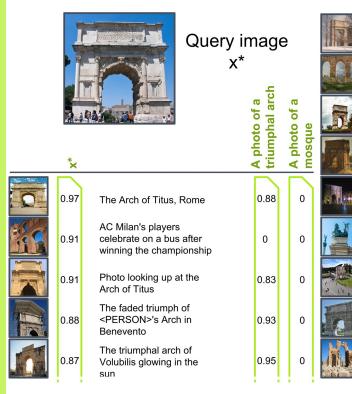
Highly interpretable representations

0.85

0.81

0.89

0.84


0.87

0

0.87

0.86

0.95

0		0.80	Large stone triumphal arch with trees on the other side in Dougga	0.95	0
0		0.78	Ruins of the Roman triumphal arch at Palmyra as photographed in 2006.	0.96	0
0		0.77	A watercolor sketch or illustration of the Brandenburg gate	0	0
0		0.76	Model of the Arch of Constantine Probably by <person></person>	0.84	0
0	farre.	0.74	The Arch of <person> and the aqueduct</person>	0.83	0
0		0.72	A picture of one of the most famous German landmarks:	0	0
0		0.69	Damage to the Umayyad Mosque in Damascus, Syria	0	0.87
0		0.68	Black and white shot of architectural columns in the park	0	0
0.66		0.65	Temple of Hatshepsut, Valley of the Kings	0	0

 Encoders can be pretrained in a completely unsupervised way

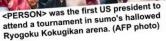
Highly interpretable representations

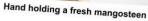
Each feature comes from a single datapoint.

<PERSON> was the first US president to attend a tournament in sumo's hallowed Ryogoku Kokugikan arena. (AFP photo)

Hand holding a fresh mangosteen

#jellyfish #blue #ocean #pretty Sea Turtle Wallpaper, Aquarius Aesthetic, Blue Aesthetic Pastel, The Adventure Zone, Capricorn And <PERSON>, Life Aquatic, Ocean Life, Jellyfish, Marine


- Encoders can be pretrained in a completely unsupervised way


Highly interpretable representations

- Each feature comes from a single datapoint.
- Each classification traces back to a small set of training data

#jellyfish #blue #ocean #pretty Sea Turtle Wallpaper, Aquarius Aesthetic, Blue Aesthetic Pastel, The Adventure Zone, Capricorn And <PERSON>, Life Aquatic, Ocean Life, Jellyfish, Marine

- Highly interpretable representations

We can add/remove training samples and update the model in seconds

King Charles gave his first Christmas speech

<PERSON> was the first US president to attend a tournament in sumo's hallowed Ryogoku Kokugikan arena. (AFP photo)

Hand holding a fresh mangosteen

- Zero-shot capabilities emerge early with small multimodal datasets Encoders can be pretrained in a completely unsupervised way Highly interpretable representations We can add/remove training samples and update the model in seconds

 Zero-shot capabilities emerge early with small multimodal datasets - Encoders can be pretrained in a completely unsupervised way - Highly interpretable representations We can add/remove training samples

and update the model in seconds Imagine using analogy

collections built with movies and tv-series of different countries

- Encoders can be pretrained in a completely unsupervised way
- Highly interpretable representations

We can add/remove training samples and update the model in seconds Imagine using analogy

Imagine using analogy collections built with movies and tv-series of different countries

- Encoders can be pretrained in a completely unsupervised way
- Highly interpretable representations
- We can add/remove training samples and update the model in seconds

ASIF knows what it does not know

If all inner products are ~0 we can output an unknown token

- Encoders can be pretrained in a completely unsupervised way
- Highly interpretable representations
- We can add/remove training samples and update the model in seconds

ASIF knows what it does not know

If all inner products are ~0 we can output an unknown token

On ImageNet threshold: 0.0039 accuracy: 0.495, unknown: 0.297, wrong: 0.208 - Zero-shot capabilities emerge early with small multimodal datasets Encoders can be pretrained in a completely unsupervised way - Highly interpretable representations

- We can add/remove training samples and update the model in seconds

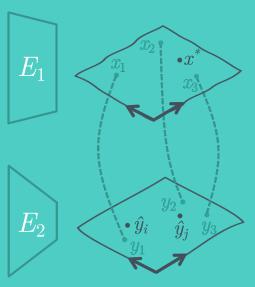
- ASIF knows what it does not know

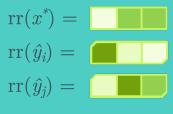
Fine pruning

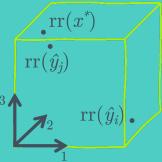
If we specialize the model, we can keep few couples

What is the difference between learning and retrieval?

Are neural encoders just sensors?


Thanks


Any questions?


ASIF: Coupled Data Turns Unimodal Models to Multimodal Without Training

Antonio Norelli, Marco Fumero, Valentino Maiorca, Luca Moschella, Emanuele Rodolà, Francesco Locatello

Check the paper on arXiv!

