
CLIP
One of the 10 most relevant works in the last 

decade in AI
Zero-shot adaptation to any visual 

classification task
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language interpretation
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ASIF: coupled data turns unimodal 
models to multimodal without training
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Our implementation

▣ Pretrained image encoder: VITb8; DINO VITs16
-Training dataset: labeled  Imagenet 22k; same unlabeled. 
-Learning task: supervised classification; unsupervised self-distillation
-Embedding size: 768; 384

▣ Pretrained text encoder: SentenceT 
-Training dataset: >1B sentences scraped from the internet (Reddit, Wiki, SO, …). 
-Learning task: BERT-like then contrastive with couples of sentences.
-Embedding size: 768

▣ Analogy collection: 
subset of CC12M
Images and alttexts scraped from
the internet. CC12M size is 10M, 
we used 1.5M analogies

Antonio Norelli et al. “ASIF: coupled data turns unimodal models to multimodal without training” under review, 2022.
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Memory impact?

We have to keep all the embeddings of the 
analogy collection in memory, but:
▣ We can compress embeddings, e.g. by 

quantization.  
▣ If we want a specialized model, we can 

perform fine pruning



1. How can we 
do this?

2. Benefits of 
this approach
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Zero-shot capabilities emerge early 
with small multimodal datasets

Test dataset: 
ImageNet

Model Accuracy Image-text 
couples seen

CLIP (VITb16) 68.6 400M

LIT (VITb16) 70.1 900M

ASIF (VITb16) 57.0 1.5M



Zero-shot capabilities emerge early 
with small multimodal datasets

Test dataset: 
ImageNet

Hyperparameters 
relevance:
▣ # nonzeros (steps)
▣ In. product exponent



Zero-shot capabilities emerge early 
with small multimodal datasets

Test dataset: 
ImageNetv2

Model Accuracy Image-text 
couples seen

CLIP (VITb16) 43.3* 900M*

LIT (VITb16) 61.7 900M

ASIF (VITb16) 47.1 1.5M

Test dataset: 
PETS

Model Accuracy Image-text 
couples seen

CLIP (VITb16) 70.3* 900M*

LIT (VITb16) 88.1 900M

ASIF (VITb16) 72.9 1.5M

*tested by the LIT authors



Encoders can be pretrained in a 
completely unsupervised way

▣ ASIF with DINO visual encoder remains effective.

- Zero-shot capabilities emerge early 
with small multimodal datasets

Antonio Norelli et al. “ASIF: coupled data turns unimodal models to multimodal without training” under review, 2022.
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Encoders can be pretrained in a 
completely unsupervised way

▣ Performance barely 
deteriorates with 
DINO encoder.

▣ 50% accuracy on 
ImageNet with 
800k couples.

- Zero-shot capabilities emerge early 
with small multimodal datasets
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set of training data

- Zero-shot capabilities emerge early 
with small multimodal datasets

Highly interpretable representations



- Encoders can be pretrained in a 
completely unsupervised way

- Zero-shot capabilities emerge early 
with small multimodal datasets

- Highly interpretable representations
We can add/remove training samples 
and update the model in seconds

King Charles gave his
first Christmas speech
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▣ Different analogy 
collections lead to 
different understandings!

- Zero-shot capabilities emerge early 
with small multimodal datasets

- Highly interpretable representations
We can add/remove training samples 
and update the model in seconds

▣ Imagine using analogy 
collections built with 
movies and tv-series of 
different countries



- Encoders can be pretrained in a 
completely unsupervised way

- Zero-shot capabilities emerge early 
with small multimodal datasets

- Highly interpretable representations
- We can add/remove training samples 
and update the model in seconds

If all inner products are ~0 we 
can output an unknown token

ASIF knows what it does not know



- Encoders can be pretrained in a 
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- Highly interpretable representations
- We can add/remove training samples 
and update the model in seconds

If all inner products are ~0 we 
can output an unknown token

ASIF knows what it does not know
On ImageNet
threshold: 0.0039
accuracy: 0.495, unknown: 0.297, wrong: 0.208 



- Encoders can be pretrained in a 
completely unsupervised way

- Zero-shot capabilities emerge early 
with small multimodal datasets

- Highly interpretable representations
- We can add/remove training samples 
and update the model in seconds

If we specialize the model, we can keep few couples

- ASIF knows what it does not know
Fine pruning



▣ What is the difference between 
learning and retrieval?

▣ Are neural encoders just sensors?



Thanks!
Any questions?

ASIF: Coupled Data Turns Unimodal 
Models to Multimodal Without Training

Antonio Norelli, Marco Fumero, 
Valentino Maiorca, Luca Moschella, 

Emanuele Rodolà, Francesco Locatello
Check the paper on arXiv!


