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1. Contrastive pre-training

pepper the Text

aussie pup Encoder 1 1 1 1

T T, T3 TN
— I L LT, LTz - Ly
— I Iy, Il ITz - Iy
Image
Ercoder = I Iy I3T, I3l - Ixdy
— Iy IyTy INT, IyTz 0 Iy Ty

Radford, Alec, et al. “Learning transferable visual models from natural language supervision.”|ICML , 2021.



2. Create dataset classifier from label text

a photo of Text
a {object}. Encoder ) ) 3 N
3. Use for zero-shot prediction \ \ Y Y
Image
Encoder L LT, IiT, IT; I

a photo of

a dog.

Radford, Alec, et al. “Learning transferable visual models from natural language supervision.”|ICML , 2021.
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ASIF

o o Multimodal dataset

a green car in the
forest




Captions of similar images are

themselves similar

Anatomy of a Kiwi Cucumber Salad

spinning wheel with Walnuts and
Saxony for Fresh Mint shown in
illustration. a shallow bow! with

Spinning Wool, Hand [T salad servers
Spinning, Spinning

Wheels, Spin

Image similanties Image similanties

Freshly picked
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| still
L

Image similarities

Multimodal dataset

Date Ideas - Glow
in the Dark Path
Materials

Image similanties
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ASIF

Problem: best caption for a given image

Multimodal dataset

Test sample _t o

a green car in the
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a farm full of
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Problem: best caption for a given image

Multimodal dataset

Test sample — L L —
apr aps « o apn  =>» = Image encoder
O O | _
=>» = Text encoder
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Sparse representations
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Sparse representations
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ASIF

Test sample

UNKNOWN
IDEAL CAPTION

a green car in the
forest

a farm full of
animals

J L

J L

apn

.54

54

.57

.87

at,,

> ASIF =t

2t = zp”
Prediction

ot i (et At > (ap" 2ty

best = caption a

N else:
Zt,
best = caption b



ASIF: coupled data turns unimodal
models to multimodal without training
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Our implementation

Pretrained image encoder: VITb8; DINO VITs16

-Training dataset: labeled Imagenet 22k; same unlabeled.
-Learning task: supervised classification; unsupervised self-distillation
-Embedding size: 768; 384

Antonio Norelli et al. “ASIF: coupled data turns unimodal models to multimodal without training” under review, 2022.



Our implementation

Pretrained image encoder: VITb8; DINO VITs16

-Training dataset: labeled Imagenet 22k; same unlabeled.
-Learning task: supervised classification; unsupervised self-distillation
-Embedding size: 768; 384

Pretrained text encoder: SentenceT

-Training dataset: >1B sentences scraped from the internet (Reddit, Wiki, SO, ...).
-Learning task: BERT-like then contrastive with couples of sentences.
-Embedding size: 768

Antonio Norelli et al. “ASIF: coupled data turns unimodal models to multimodal without training” under review, 2022.



Our implementation

Pretrained image encoder: VITb8; DINO VITslo

-Training dataset: labeled Imagenet 22k; same unlabeled.
-Learning task: supervised classification; unsupervised self-distillation
-Embedding size: 768; 384

Pretrained text encoder: SentenceT

-Training dataset: >1B sentences scraped from the internet (Reddit, Wiki, SO,
-Learning task: BERT-like then contrastive with couples of sentences.
-Embedding size: 768

Analogy collection:
subset of CCI2M

Images and alttexts scraped from
the internet. CC12M size is 10M,

v . \
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guantization.



Memory impact?

We have to keep all the embeddings of the
analogy collection in memory, but:

We can compress embeddings, e.g. by
guantization.

If we want a specialized model, we can
perform fine pruning



1. How can we
do this?

2. Benefits of
this approach




Zero-shot capabilities emerge early
with small multimodal datasets

0.5

0.4 4

0.3 1

0.2 4

0.1 1

ImageNet val split2 (precomputed) 0-shot accuracy

— non_zeros: 800, val_exp: 8

10° 10* 10° 10°
Number of anchors

Antonio Norelli et al. “ASIF: coupled data turns unimodal models to multimodal without training” under review, 2022.



Zero-shot capabilities emerge early
with small multimodal datasets

=}
ot

§ 05
Method Dataset size = ImageNet é
CLIP (Radford et al., 2021)  400M (private) 68.6 e
CLIP (Radford et al., 2021) 15M (public) 31.3 "é
LIT (Zhai et al., 2022) 10M (public) 66.9 § 03
CLIP (Zhai et al., 2022, uu) 901M (private) 50.6 8
LIT (Zhai et al., 2022) 901M (private) 70.1 x
ASIF (sup vis. encoder) 1.6M (public) 5547 if 02

g

= non_zeros: 800, val_exp: 8

10° 10¢ 10° 10°
Number of anchors
Antonio Norelli et al. “ASIF: coupled data turns unimodal models to multimodal without training” under review, 2022.



Zero-shot capabilities emerge early
with small multimodal datasets

Method Dataset size = ImageNet CIFAR100 Pets ImageNet v2
CLIP (Radford et al., 2021)  400M (private) 68.6 68.7 88.9 -

CLIP (Radford et al., 2021) 15M (public) 31.3 - - -

LIT (Zhai et al., 2022) 10M (public) 66.9 - - -

CLIP (Zhai et al., 2022, uu) 901M (private) 50.6 47.9 70.3 43.3

LIT (Zhai et al., 2022) 901M (private) 70.1 70.9 88.1 61.7
ASIF (sup vis. encoder) 1.6M (public) 5547 63.3 71.5 45.6

Antonio Norelli et al. “ASIF: coupled data turns unimodal models to multimodal without training” under review, 2022.



Zero-shot capabilities emerge early
with small multimodal datasets

Method Dataset size =~ ImageNet
CLIP (Radford et al., 2021)  400M (private) 68.6
CLIP (Radford et al., 2021) 15M (public) 31.3
LIT (Zhai et al., 2022) 10M (public) 66.9
CLIP (Zhai et al., 2022, uu) 901M (private) 50.6
LIT (Zhai et al., 2022) 901M (private) 70.1
ASIF (sup vis. encoder) 1.6M (public) 55.4*

ASIF (unsup vis. encoder) 1.6M (public) 53.0*

ImagenetVal zero-shot accuracy

0.5
0.4 -
0.3 -
021

0.11

1 = non-zeros: 50, val_exp: 1
—— non-zeros: 50, val_exp: 8

1 — non-zeros: 800, val_exp: 1
1 —— non-zeros: 800, val_exp: 8
—— non-zeros: 1600, val_exp: 1
1 —— non-zeros: 1600, val_exp: 8

0.0 -

10? 10° 104 10° 10°

Size of the multimodal dataset

Antonio Norelli et al. “ASIF: coupled data turns unimodal models to multimodal without training” under review, 2022.




Zero-shot capabilities emerge early
with small multimodal datasets

Test dataset:
CIFAR 100

0.675

Accuracy Image-text
o 0625

couples seen B

CLIP (VITb16) 68.7 400M
LIT (VITb16) 70.9 900M

ASIF (VITb16) 73.3 1.5M

CIFAR-100 0-shot accuracy vs available analogies; value exponent = 5




Zero-shot capabilities emerge early
with small multimodal datasets

Test dataset:
CIFAR 100

55% accuracy with
just 10,000 image-
text couples




Zero-shot capabilities emerge early
with small multimodal datasets

ImageNet 0-shot accuracy vs available analogies

Test dataset: =
ImageNet
Accuracy Image-text o ~
couples seen [N i
CLIP (VITb16)  68.6 400M _ =
LIT (VITb16) 70.1 900M ;
ASIF (VITb16)  57.0 1.5M an




Zero-shot capabilities emerge early
with small multimodal datasets

Test dataset:
IMmageNet

Hyperparameters
relevance:

# nonzeros (steps)

SHEHHHE R

In. product exponent .,




Zero-shot capabilities emerge early
with small multimodal datasets

Test dataset: Test dataset:
ImageNetv2 PETS
Accuracy Image-text Accuracy Image-text
couples seen couples seen
CLIP (VITb16) 900M* CLIP (VITb16) 70. 900M*
LIT (VITb16) 61.7 900M LIT (VITb16) 88.1 900M
ASIF (VITb16) 47 1 1.5M ASIF (VITb16) 72.9 1.5M

*tested by the LIT authors



Encoders can be pretrained in a

completely unsupervised way

ASIF with DINO visual encoder remains effective.

Method Dataset size = ImageNet CIFAR100 Pets ImageNet v2
CLIP (Radford et al., 2021)  400M (private) 68.6 68.7 88.9 -

CLIP (Radford et al., 2021) 15M (public) 31.3 - - -

LIT (Zhai et al., 2022) 10M (public) 66.9 - - -

CLIP (Zhai et al., 2022, uu) 901M (private) 50.6 479 70.3 43.3
LIT (Zhai et al., 2022) 901M (private) 70.1 70.9 88.1 61.7
ASIF (sup vis. encoder) 1.6M (public) 55.4% 63.3 71.5 45.6

Antonio Norelli et al. “ASIF: coupled data turns unimodal models to multimodal without training” under review, 2022.



Encoders can be pretrained in a
completely unsupervised way

ASIF with DINO visual encoder remains effective.

Method Dataset size = ImageNet CIFAR100 Pets ImageNet v2
CLIP (Radford et al., 2021)  400M (private) 68.6 68.7 88.9 -

CLIP (Radford et al., 2021) 15M (public) 31.3 - - -

LIT (Zhai et al., 2022) 10M (public) 66.9 - - -

CLIP (Zhai et al., 2022, uu) 901M (private) 50.6 479 70.3 43.3

LIT (Zhai et al., 2022) 901M (private) 70.1 70.9 88.1 61.7
ASIF (sup vis. encoder) 1.6M (public) 55.4% 63.3 71.5 45.6

ASIF (unsup vis. encoder) 1.6M (public) 53.0* 46.5 74.7 45.9

Antonio Norelli et al. “ASIF: coupled data turns unimodal models to multimodal without training” under review, 2022.
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deteriorates with
DINO encoder.




Encoders can be pretrained in a
completely unsupervised way

Performance barely
deteriorates with
DINO encoder.

50% accuracy on
ImageNet with
800k couples.
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Highly interpretable representations
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Highly interpretable representations

Each feature comes
from a single data-
point.

Each classification

traces back to a small
set of training data oz L L Mo

e

olding a fresh mangosteen



We can add/remove training samples
and update the model in seconds

- | |

® w I

o ?rst US president to

g - :n sumo's hallowed  Hand ho|
arena. (AFP photo)

King Charles gave his

first Christmas speech attend a tournament
Ryogoku Kokugikan

Iding a fresh mangosteen



We can add/remove training samples
and update the model in seconds



We can add/remove training samples

and update the model in seconds
‘ | i Imagine using analogy

collections built with
movies and tv-series of
different countries




We can add/remove training samples

ate the model in seconds
, _, = |Magine using analogy

collections built with
movies and tv-series of




ASIF knows what it does not khow

If all inner products are ~O we
can output an unknown token



ASIF knows what it does not know
If all inner products are ~0 we On ImageNet

threshold: 0.0039

Ca n O u t p u t a n u n kn Own to ke n accuracy: 0.495, unknown: 0.297, wrong: 0.208



Fine pruning
If we specialize the model, we can keep few couples



What is the difference between
learning and retrieval?

Are neural encoders just sensors?






