

From Images to Text: New forms of Human-Al Interaction

Lorenzo Baraldi

VISMAC

Describing images in Natural Language

Goal: describe a visual input in natural language.

Base technical idea: Combine visual feature extractors with language models

1. Karpathy, A., & Fei-Fei, L. Deep visual-semantic alignments for generating image descriptions. In CVPR 2015.

- 2. Vinyals, O., Toshev, A., Bengio, S., & Erhan, D. Show and tell: A neural image caption generator. In CVPR 2015.
- 3. Donahue, J., Anne Hendricks, L., Guadarrama, S., Rohrbach, M., Venugopalan, S., Saenko, K., & Darrell, T. Long-term recurrent convolutional networks for visual recognition and description. In CVPR 2015.

1.

2.

3.

4.

.

.

The Image Captioning Journey

TRAINING STRATEGIES

- **Reinforcement Learning**

LANGUAGE MODELS

- **Image-Text Early Fusion**

A herd of zebras grazing with a rainbow behind.

"Image Captioning" and related keywords in the text of recent papers:

Base technical idea: combine visual feature extractors with language models.

Base technical idea: combine visual feature extractors with language models.

Many possibilities

- Language model:
 - RNN and variants (LSTM)
 - 1-d CNN
 - Transformer-based (recently)

Base technical idea: combine visual feature extractors with language models.

Many possibilities

- Language model:
 - RNN and variants (LSTM)
 - 1-d CNN
 - Transformer-based (recently)
- Conditioning on the visual input:
 - Single feature (e.g. pooling)
 - Sequence of features (e.g. video captioning)
 - Set of features (models based on attention)

Language model

- Prediction process is always **sequential**, i.e. we model the probability of outputting a word given previous words in the sentence.
- The probability distribution for w_t is conditioned on w_{t-1} , w_{t-2} , ... w_0

Language model

- Prediction process is always sequential, i.e. we model the probability of outputting a word given previous words in the sentence.
- The probability distribution for w_t is conditioned on w_{t-1} , w_{t-2} , ... w_0
- A function f models the computational graph for predicting the word at each step (the "step function").
 - Any of {RNN, CNN, Transformer, ...}

Language Models for Image Captioning

Transformer

At training time

• Train the model to predict a word given the previous ground-truth words.

At training time

• Train the model to predict a word given the previous ground-truth words.

At training time

• Train the model to predict a word given the previous ground-truth words.

At training time

• Train the model to predict a word given the previous ground-truth words.

- If the step function does not depend on its own output at previous timesteps:
- We can parallelize over the t axis.
 - \rightarrow Training time reduction
 - E.g. Conv1D, Transformer

At training time

• Train the model to predict a word given the previous ground-truth words.

- If the step function does not depend on its own output at previous timesteps:
- We can parallelize over the t axis.
 - \rightarrow Training time reduction
 - E.g. Conv1D, Transformer

At training time

• Train the model to predict a word given the previous ground-truth words.

- If the step function does not depend on its own output at previous timesteps:
- We can parallelize over the t axis.
 - \rightarrow Training time reduction
 - E.g. Conv1D, Transformer

•

Anatomy of a Captioning System

Visual **Probability** distribution for w_{t-1}

w_t: sampled words

At prediction time (sampling)

• We sample one word from the previous output, and use this as an input.

Visual Visual **W**_{t-1} f Probability **Probability** distribution distribution for w_{t-1} for w_t Sample!

w_t: sampled words

At prediction time (sampling)

- We sample one word from the previous output, and use this as an input.
- Possible strategies:
 - Always sample the most probable word
 - Build a tree of possible choices, then select the chain of predictions with maximum probability (*beam search*)

w_t: sampled words

What About Image Encoding

Global CNN Features

Attention Over Grid of CNN Features

CNN

Image

attention

language model

Describing Images in Natural Language

- **Standard datasets** (e.g., Microsoft COCO, FLickr8k, Flickr30k)
- Pre-training datasets (e.g., SBU Captions, Conceptual Captions 3M/12M)
- Domain-specific datasets (e.g., VizWiz Captions, CUB-200, Oxford-102, Fashion Captioning, Breaking News, GoodNews, TextCaps Localized Narratives)

	Domain	Nb. Images	Nb. Caps (per Image)	Vocab Size	Nb. Words (per Cap.)
MS COCO	Generic	132K	5	27K (10K)	10.5
Flickr30K	Generic	31K	5	18K (7K)	12.4
Flickr8K	Generic	8K	5	8K (3K)	10.9
CC3M	Generic	3.3M	1	48K (25K)	10.3
CC12M	Generic	12.4M	1	523K (163K)	20.0
SBU Captions	Generic	1 M	1	238K (46K)	12.1
VizWiz	Assistive	70K	5	20K (8K)	13.0
CUB-200	Birds	12K	10	6K (2K)	15.2
Oxford-102	Flowers	8K	10	5K (2K)	14.1
Fashion Cap.	Fashion	130K	1	17K (16K)	21.0
BreakingNews	News	115K	1	85K (10K)	28.1
GoodNews	News	466K	1	192K (54K)	18.2
TextCaps	OCR	28K	5/6	44K (13K)	12.4
Loc. Narratives	Generic	849K	1/5	16K (7K)	41.8

white

Evaluation for Image Captioning

	Show and Tell [†] SCST (FC) [‡]	SCST (Att2in) [‡] Up-Down [‡]	MT AoANet		DPA AutoCaption	•	CPTR \mathcal{M}^2 Transformer	•	Unified VLP VinVL
•	Show, Attend and Tell ^{\dagger}	SGAE	X-LAN	٠	ORT	٠	X-Transformer		-

			Inputs		s
		Original Task	Pred	Refs	Image
	BLEU	Translation	1	1	
	METEOR	Translation	1	1	
Standard	ROUGE	Summarization	1	\checkmark	
	CIDEr	Captioning	1	1	
	SPICE	Captioning	\checkmark	(\checkmark)	(•
	Div-1/2	Captioning	1		
Diversity	Vocab. Size	Captioning	1		
	%Novel	Captioning	1		
	WMD	Doc. Dissimilarity	1	1	
Embedding-based	Alignment	Captioning	1	1	
C C	Coverage	Captioning	\checkmark	(\checkmark)	(✔)
	TIGEr	Captioning	1	1	1
Learning-based	BERT-S	Text Similarity	\checkmark	1	
-	CLIP-S	Captioning	1	(\checkmark)	1

But looking at the captions is key...

From Show to Tell: A survey on Image Captioning

M. Stefanini, M. Cornia, L. Baraldi, S. Cascianelli, G. Fiameni, R. Cucchiara

TPAMI 2023 - https://arxiv.org/pdf/2107.06912.pdf

Covers all visual and textual encoding modalities, training strategies, datasets, evaluation metrics and variants, over **more than 177 captioning papers**!

	,
From Sho	w to Tell:
A Survey on Ima	age Captioning
Matteo Stefanini, Marcella Cornia, L	orenzo Baraldi, Silvia Cascianelli,
Giuseppe Fiameni, a	and Rita Cucchiara
Abstract—Connecting Vision and Language plays an essential role large research of the tase been devoted to image captioning, i.e. the ta- meaning/ul sentonces. Starting from 2015 the task has generally bee and a language model to tast generation. During these years, both object regions, attributes, and invalidnessing and the introduction of m early-tusion strategies. However, regardless of the impressive results conclusive analyses. However, regardless of the impressive results conclusive analyses that operation to training strategies, used room viewal encoding and test generation to training strategies. We have not an early related of the ant approaches to identify the m architectures and training strategies. Moreover, many variants of the final goal of this work is to sarve as a tool for understanding the exist area of research where Computer Vision and Natural Language Proc	In Generative Intelligence. For this reason, in the last few years, a sak of disorbing images with syntactically and semantically in addressed with pipelines composed of a situal endoding stag components have evolved considerably through the exploitation of uit modal concernism. Inly-startive approaches, and BERTSale obtained, research in image captioning paperahes, datasets, and evaluation metrics. In this respect, we quantitatively on image to the set of the set of the set of the set of the pipeline and its open challenges are analyzed and discussed. The img state-of-the-art and highlighting the future directions for an assisting can find an optimal synangy.
Index Terms-Image Captioning, Vision-and-Language, Deep Learn	ting, Survey.
MAGE captioning is the task of describing the visual con- lunderstanding system and a language mephoying a visual understanding system and a language meddel capable of generating meaningful and syntactically correct sentences. Securoscience research has clarified the link between hu- man vision and language generation only in the last few years [1]. Similarly, in Artificial Intelligence, the design of architectures capable of processing images and generating language is a very recent matter. The goal of these research forts is to find the most effective pipeline to process an input image, represent its content, and transform that into a sequence of words by generating connections between visual and textual elements while maintaining the fluency of language. In its standard configuration, image captioning is an image-to-sequence problem whose inputs are pixels. These are rencoded as one or multiple fasture vectors in the visual encoding step, which prepares the input for a second generative step, called the language model. This produces a sequence of words by genorals docted according to a given vocabulary. In these few years, the research commu- nity improved the models considerably from the first deep learning-based proposals adopting Recurrent Neural Net- works (RNN) fed vith global image descriptor extracted by a Convolutional Neural Network (CNN), methods have been enriched with attentive approaches and reinforcement laming, up to the breakthroughs of Transformers and self-	attention to single-stream BERT-like approaches. At the same time, the Computer Vision and Natural Language Pro- cessing (NLIP) communities have addressed the challenge of building proper evaluation protocols and evaluation metrics to compare results with human-generated ground-truths. Moreover, several domain-specific scenarios and variants of the task have been investigated. However, the achieved results are still far from setting an ultimate solution. With the aim of providing a testament to the journey that captioning has taken so far, and with hut of encouraging novel ideas, in this paper, we trace a holistic overview of the models developed in the last years. Following the inherent dual nature of captioning mod- ies, we develop a taxonomy of both the visual encod- ing and the language modeling approaches, focusing on their key aspects and limitations. We also focus on the training strategies followed in the literature over the past years, from cross-entropy loss to reinforcement learning and the neorest advancement obtained by the pre-training paradigm. Furthermore, we review the main datasets used to explore image captioning, from domain-generic bench- marks to domain-specific datasets collected to investigat specific aspects of the problem and analyze standard and non-standard metrics adopted for performance evaluation which capture different aspects of the problem and manyes standard and non-standard metrics adopted for performance evaluation which considers both standard and non-standard metrics whate discusses the standard and non-standard metrics.
Madena and Rogie Emilia, Madrus, Italy E-mail: [mittin adjoint]. marrilla carnia, lorenza barskéi, elivia cancionelli, rita cucchiano Jihanimare et . G. Fiannai in arith NVIDIA AI Technology Centre, Italy E-mail: [juteneoniBroidia can	and a discussion of their relationships, which while sign on performance, differences, and characteristics of the most important models. Finally, we give an overview of many variants of the problem and discuss some open challenge and future directions.

Meshed-Memory Transformer

Meshed-Memory Transformer

M² Transformer

Original Transformer

- Our model is divided into an **encoder** and a **decoder** module, both made of stacks of attentive layers.
- All intra-modality and cross-modality interactions between word and image features are modeled via scaled dot-product attention, without using recurrence.

Attention
$$(\boldsymbol{Q}, \boldsymbol{K}, \boldsymbol{V}) = \operatorname{softmax}\left(\frac{\boldsymbol{Q}\boldsymbol{K}^T}{\sqrt{d}}\right)\boldsymbol{V}$$

Self-Attention

- Queries, keys, and values come from the same modality.
- They are extracted from image features in the encoder, and from words in the decoder.

Cross-Attention (decoder only)

- Queries are extracted from words.
- Keys and values are extracted from image features coming from the encoder layers.

- The set of keys and values used in an encoder layer is extended with vectors which can encode **a priori information**.
- The additional keys and values are implemented as plain **learnable vectors** which can be directly updated via SGD.
- The operator is defined as:

$$\begin{split} \mathcal{M}_{\text{mem}}(\boldsymbol{X}) &= \mathsf{Attention}(W_q \boldsymbol{X}, \boldsymbol{K}, \boldsymbol{V}) \\ \boldsymbol{K} &= [W_k \boldsymbol{X}, \boldsymbol{M}_k] \\ \boldsymbol{V} &= [W_v \boldsymbol{X}, \boldsymbol{M}_v] \,, \end{split}$$

• We can learn a multi-level representation of the relationships between image regions integrating learned a priori knowledge.

- We perform a cross-attention with all encoding layers.
- Our **meshed attention operator** is defined as

$$\mathcal{M}_{ ext{mesh}}(ilde{\mathcal{X}},oldsymbol{Y}) = \sum_{i=1}^N oldsymbol{lpha}_i \odot \mathcal{C}(ilde{oldsymbol{X}}^i,oldsymbol{Y})$$

where $C(\cdot, \cdot)$ is the cross-attention computed using queries from the decoder and keys and values from the encoder:

$$\mathcal{C}(\tilde{X}^i, Y) = \mathsf{Attention}(W_q Y, W_k \tilde{X}^i, W_v \tilde{X}^i)$$

• Weights in α_i modulate the contribution of each encoding layer and the relative importance between different layers.

$$\boldsymbol{\alpha}_{i} = \sigma \left(W_{i} \left[\boldsymbol{Y}, \mathcal{C}(\tilde{\boldsymbol{X}}^{i}, \boldsymbol{Y}) \right] + b_{i} \right)$$

M² Transformer: Results

		BLE	U-1	BLE	U-2	BLE	U-3	BLE	U-4	ME	TEOR	ROU	JGE	CII	DEr
_		c5	c40	c5	c40										
CVPR 2017	SCST [33]	78.1	93.7	61.9	86.0	47.0	75.9	35.2	64.5	27.0	35.5	56.3	70.7	114.7	116.7
CVPR 2018	Up-Down [4]	80.2	95.2	64.1	88.8	49.1	79.4	36.9	68.5	27.6	36.7	57.1	72.4	117.9	120.5
ICCV 2019	RDN [18]	80.2	95.3	-	-	-	-	37.3	69.5	28.1	37.8	57.4	73.3	121.2	125.2
ECCV 2018	RFNet [15]	80.4	95.0	64.9	89.3	50.1	80.1	38.0	69.2	28.2	37.2	58.2	73.1	122.9	125.1
ECCV 2018	GCN-LSTM [48]	80.8	95.9	65.5	89.3	50.8	80.3	38.7	69.7	28.5	37.6	58.5	73.4	125.3	126.5
CVPR 2019	SGAE [46]	81.0	95.3	65.6	89.5	50.7	80.4	38.5	69.7	28.2	37.2	58.6	73.6	123.8	126.5
ICCV 2019	ETA [24]	81.2	95.0	65.5	89.0	50.9	80.4	38.9	70.2	28.6	38.0	58.6	73.9	122.1	124.4
ICCV 2019	AoANet [14]	81.0	95.0	65.8	89.6	51.4	81.3	39.4	71.2	29.1	38.5	58.9	74.5	126.9	129.6
ICCV 2019	GCN-LSTM+HIP [49]	81.6	95.9	66.2	90.4	51.5	81.6	39.3	71.0	28.8	38.1	59.0	74.1	127.9	130.2
	\mathcal{M}^2 Transformer	81.6	96.0	66.4	90.8	51.8	82.7	39.7	72.8	29.4	39.0	59.2	74.8	129.3	132.1

→ At the beginning of 2020, our model reached the **first place in the COCO leaderboard.**

Controllable Captioning

Controllable Image Captioning

Early captioning approaches:

• Global image feature vector

Attention-based approaches:

- Weakly interpretable (through attention)
- Not controllable.
 - We can't decide which regions get processed
 - No control over the generation process.

Show, control and tell

- Controllable via regions
 - A sequence (ordered)
 - A set (unordered)

- Language model takes as input a sequence of regions
- Switches between one region and the next one via a learned chunk-shifting gate
 - When it's done with the generation of chunk, it moves to the next region in the sequence

- Language model takes as input a sequence of regions
- Switches between one region and the next one via a learned chunk-shifting gate
 - When it's done with the generation of chunk, it moves to the next region in the sequence

- Language model takes as input a sequence of regions
- Switches between one region and the next one via a learned chunk-shifting gate
 - When it's done with the generation of chunk, it moves to the next region in the sequence

- Language model takes as input a sequence of regions
- Switches between one region and the next one via a learned chunk-shifting gate
 - When it's done with the generation of chunk, it moves to the next region in the sequence

Train on GT words and shifting gate values (obtained via NLP)

Sorting Network

 \boldsymbol{P}

- What if we have an unordered set as input?
- We can learn a network to do the sorting! \rightarrow SINKHORN NETWORK •
 - Approximates a derivable permutation matrix ۲
 - Train on real data, then use the Hungarian to get the true permutation matrix. ٠

Transformer-based Show, Control and Tell

Marcella Cornia, Lorenzo Baraldi, and Rita Cucchiara. "Fully-Attentive Iterative Networks for Region-Controlled Image and Video Captioning." Under Review.

Results when controlling with a sequence of regions

A man sitting at a desk with a computer and a man holding a camera.

A man sitting at a desk with a computer.

Marcella Cornia, Lorenzo Baraldi, and Rita Cucchiara. "Fully-Attentive Iterative Networks for Region-Controlled Image and Video Captioning." Under Review. Marcella Cornia, Lorenzo Baraldi, and Rita Cucchiara. "Show, Control and Tell: A Framework for Generating Grounded and Controllable Captions." CVPR 2019.

Results when controlling with a set of regions

A man in a black jacket skiing A man on skis down a snow down a hill. covered slope.

Marcella Cornia, Lorenzo Baraldi, and Rita Cucchiara. "Fully-Attentive Iterative Networks for Region-Controlled Image and Video Captioning." Under Review. Marcella Cornia, Lorenzo Baraldi, and Rita Cucchiara. "Show, Control and Tell: A Framework for Generating Grounded and Controllable Captions." CVPR 2019.

Universal Captioner

Universal Captioner

- Current captioning models do not cover the entire long-tail distribution of real-world concepts.
- We address the task of generating human-like descriptions with in-the-wild concepts:
 - training on web-scale automatically collected datasets;
 - while maintaining the descriptive style of traditional human-annotated datasets like COCO.

Inputs

- CNN feature extractors which can directly take raw pixels as input and avoid the need of using object detectors;
- **Textual keywords** extracted with large-scale cross-modal models;
- Stylistic tokens to separate hand-collected and web-based image-caption pairs.

Architecture

Fully-attentive encoder-decoder that jointly encodes keywords, style, and text.

Data

• Training on hand-collected and web-scale datasets, for a total of **36.4 million image-text pairs**.

Marcella Cornia, Lorenzo Baraldi, Giuseppe Fiameni, and Rita Cucchiara. "Universal Captioner: Long-Tail Vision-and-Language Model Training through Content-Style Separation". Under Review

Main results:

- State-of-the-art results on COCO;
- State-of-the-art results on nocaps when using external data;
- Zero-shot generalization to other datasets;
- Capability to name long-tail concepts (*e.g.* proper nouns of places, famous people, brands).

	B-4	М	R	С	S
\mathcal{M}^2 Transformer X-Transformer AutoCaption	$39.1 \\ 39.7 \\ 40.2$	$29.2 \\ 29.5 \\ 29.9$	$58.6 \\ 59.1 \\ 59.5$	$131.2 \\ 132.8 \\ 135.8$	$22.6 \\ 23.4 \\ 23.8$
$egin{array}{c} \mathrm{OSCAR}^{\mathrm{base}} \ \mathrm{VinVL}^{\mathrm{base}} \end{array}$	$\begin{array}{c} 40.5\\ 40.9 \end{array}$	29.7 30.9	-	$\begin{array}{c} 137.6\\ 140.6\end{array}$	22.8 25.1
UniversalCap ^{tiny} UniversalCap ^{small} UniversalCap ^{base}	40.8 41.2 40.8	$29.9 \\ 30.4 \\ 30.4$	59.9 60.2 60.2	140.4 143.0 143.4	$23.4 \\ 24.1 \\ 24.2$

Results on COCO

Results on Open Images								
	CLIP-S	# Long-tail Words	# Proper Nouns					
$VinVL^{base}$ $VinVL^{large}$	$0.708 \\ 0.715$	$149\\186$	55 60					
$egin{array}{l} {f UniversalCap}^{{ m tiny}} \ {f UniversalCap}^{{ m small}} \ {f UniversalCap}^{{ m small}} \ {f UniversalCap}^{{ m base}} \end{array}$	0.728 0.732 0.739	821 866 1,071	410 432 469					

Marcella Cornia, Lorenzo Baraldi, Giuseppe Fiameni, and Rita Cucchiara. "Universal Captioner: Long-Tail Vision-and-Language Model Training through Content-Style Separation". Under Review

Universal Captioner

Standard Captioner: A large building with a statue on the front.

Universal Captioner: The Arc de Triomphe in Paris with a blue sky.

Standard Captioner: A president speaking at a podium in front of a flag. Universal Captioner: President **Obama** giving a speech in front of an American flag.

Standard Captioner: Two plates of pancakes with syrup on a table.

Universal Captioner: A plate of pancakes and a jar of Nutella on a table.

Standard Captioner: A picture of a bridge over a body of water.

Universal Captioner: A picture of the **Golden Gate** bridge in San Francisco.

Standard Captioner: A red truck driving down a highway.

Universal Captioner: A red Coca-Cola truck driving down the highway.

Standard Captioner: A man standing in front of an apple screen.

Universal Captioner: Steve Jobs standing in front of an Apple logo.

Standard Captioner: A castle with flowers in the middle of a body of water.

Universal Captioner:

A view of the Taj Mahal reflecting in the water.

Standard Captioner: A woman with blonde hair is posing for a picture.

Universal Captioner: A picture of Marilyn Monroe with a red lipstick.

A person holding a cellphone with a **Facebook logo** on it.

Standard Captioner: A crowd of people standing in front of a tall tower.

Universal Captioner: A group of people standing near the leaning tower of Pisa.

Standard Captioner: There is a clown mask on top of a store.

Universal Captioner: A statue of Ronald McDonald in front of a McDonald's.

A poster of a young boy with two children.

Universal Captioner: A Harry Potter and the Prisoner of Azkaban concert poster.

Marcella Cornia, Lorenzo Baraldi, Giuseppe Fiameni, and Rita Cucchiara. "Universal Captioner: Long-Tail Vision-and-Language Model Training through Content-Style Separation". Under Review

Evaluation Metrics

A New Evaluation metric

PAC-S: A new metric for evaluating image-text correspondence

- Existing metrics for image-text correspondence are either only based on (few) human references or multimodal embeddings trained on noisy data.
- We propose a learnable metric for video and image captioning, which employs both pre-training on webcollected data, generated data for data augmentation and the power of human annotations.
- Based on a *positive-augmented training* of a multimodal embedding space.
- Our metric outperforms previous reference-free and reference-based metrics in terms of *correlation with human judgment*.

Image	Candidate Captions	Evaluation Scores				
	A black cow by a person.	METEOR CIDEr CLIP-S PAC-S 9.67 14.9 0.766 0.676				
	A cow walking through a field.	METEOR CIDEr CLIP-S PAC-S 15.0 17.2 0.754 0.775				
	A silver bicycle is parked in a living room.	METEOR CIDEr CLIP-S PAC-S 23.1 68.6 0.686 0.853				
	A silver bicycle leaning up against a kitchen table and chairs.	METEOR CIDEr CLIP-S PAC-S 32.4 63.7 0.637 0.862				
	A yellow bus passes through an intersection.	METEOR CIDEr CLIP-S PAC-S 42.7 167.0 0.816 0.836				
	A yellow bus is traveling down a city street just past an intersection.	METEOR CIDEr CLIP-S PAC-S 33.9 94.5 0.813 0.844				

Positive-Augmented Contrastive Learning

- Dual-encoder architecture comparing the visual and textual inputs via cosine similarity
- Usage of synthetic generators of both visual and textual data (Stable Diffusion¹ and BLIP², respectively)

Fine-tuning on human annotated data by taking into account *contrastive relationship* between real and generated matching image-caption pairs.

1. Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-resolution image synthesis with latent diffusion models. In CVPR, 2022.

2. Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation. In ICML, 2022.

Image Captioning Correlation with Human Judgment

PAC score achieves the **best correlation with human judgment** and accuracy on all the considered image datasets, demonstrating its *effectiveness* compared to previously proposed metrics.

	Flickr8	k-Expert	Flick	r8k-CF		Com	posite				Pascal-5	50S	
	Kendall τ_b	Kendall τ_c	Kendall $ au_b$	Kendall τ_c		Kendall τ_b	Kendall τ_c		HC	HI	HM	MM	I
BLEU-1	32.2	32.3	17.9	9.3	BI FU-1	29.0	31.3	length	51.7	52.3	63.6	49.6	
BLEU-4	30.6	30.8	16.9	8.7	BLEU-1 BLEU-4	29.0	30.6	BLEU-1	64.6	95.2	91.2	60.7	
ROUGE	31.1	32.3	19.9	10.3	DOUCE	20.5	32.4	BLEU-4	60.3	93.1	85.7	57.0	,
METEOR	41.5	41.8	22.2	11.5	NETEOD	30.0	32.4	ROUGE	63.9	95.0	92.3	60.9	,
CIDEr	43.6	43.9	24.6	12.7	METEOR	36.0	38.9	METEOR	66.0	97.7	94.0	66.6	
SPICE	51.7	44.9	24.4	12.0	CIDEr	34.9	31.1	CIDEr	66.5	07.0	90.7	65.2	
BERT-S	_	39.2	22.8	_	SPICE	38.8	40.3		00.5	91.9	90.7	03.2	
LEIC	46.6	-	29.5	_	BERT-S	_	30.1	BERT-S	65.4	96.2	93.3	61.4	
BERT-S++	-	46.7	-	-	BERT-S++	_	44.9	BERT-S++	65.4	98.1	96.4	60.3	
UMIC	-	46.8	-	-	TIGEr		45.7	TIGEr	56.0	99.8	92.8	74.2	:
TIGEr	-	49.3	-	-		-	43.4	ViLBERTScore	49.9	99.6	93.1	75.8	,
ViLBERTScore	-	50.1	-	-	VILBERISCOR	-	52.4	FAIEr	59.7	<u>99.9</u>	92.7	73.4	8
MID	-	54.9	37.3	-	FAIEr	-	51.4	MID	67.0	99.7	<u>97.4</u>	76.8	<u>8</u>
CLIP-S	51.1	51.2	34.4	17.7	CLIP-S	49.8	53.8	CLIP-S	55.9	99.3	96.5	72.0	
CLII-5	53.0	54.3	36.0	18.6	DACS	51.5	55.7		60.6	99.3	96.9	72.9	5
PAC-S	(+2.8)	(+3.1)	(+1.6)	(+0.9)	rac-5	(+1.7)	(+1.9)	PAC-S	(+4.7)	(+0.0)	(+0.4)	(+0.9)	(-
RefCLIP-S	52.6	53.0	36.4	18.8	RefCLIP-S	51.2	55.4	RefCLIP-S	64.9	99.5	95.5	73.3	
DofDAC S	<u>55.4</u>	<u>55.8</u>	<u>37.6</u>	<u>19.5</u>	RofPAC-S	<u>52.8</u>	<u>57.1</u>	DofDAC -S	<u>68.2</u>	99.5	95.6	75.9	
KelfAC-5	(+2.8)	(+2.8)	(+1.2)	(+0.7)	NULAC-5	(+1.6)	(+1.7)	Nell'AC-5	(+3.3)	(+0.0)	(+0.1)	(+2.6)	(

Micah Hodosh, Peter Young, and Julia Hockenmaier. Framing image description as a ranking task: Data, models and evaluation metrics. JAIR, 47:853–899, 2013

Somak Aditya, Yezhou Yang, Chitta Baral, Cornelia Fermuller, and Yiannis Aloimonos. From Images to Sentences through Scene Description Graphs using Commonsense Reasoning and Knowledge Ramakrishna Vedantam, C Lawrence Zitnick, and Devi Parikh. CIDEr: Consensus-based Image Description Evaluation. In CVPR, 2015

Video Captioning Correlation with Human Judgment

It works well on videos too!

	No	Ref	1	Ref	9 Refs		
	Kendall τ_b	Spearman ρ	Kendall τ_b	Spearman ρ	Kendall τ_b	Spearman ρ	
BLEU-1	-	-	12.2	15.9	28.9	37.0	
BLEU-4	-	-	12.6	16.4	22.4	29.5	
ROUGE	-	-	12.5	16.3	23.8	30.9	
METEOR	-	-	16.4	21.5	27.6	35.7	
CIDEr	-	-	17.3	22.6	27.8	36.1	
BERT-S	-	-	18.2	23.7	29.3	37.8	
BERT-S++	-	-	15.2	19.8	24.4	31.7	
EMScore	23.2	30.3	28.6	37.1	36.8	47.2	
PAC-S / RefPAC-S	<u>25.1</u> (+1.9)	<u>32.6</u> (+2.3)	<u>31.4</u> (+2.8)	<u>40.5</u> (+3.4)	<u>38.1</u> (+1.3)	$\frac{48.8}{(+1.6)}$	

Human judgment correlation scores on the VATEX-EVAL¹ dataset. We show Kendall τ_B correlation score at varying of the number of reference captions.

Yaya Shi, Xu Yang, Haiyang Xu, Chunfeng Yuan, Bing Li, Weiming Hu, and Zheng-Jun Zha. EMScore: Evaluating Video Captioning via Coarse-Grained and Fine-Grained Embedding Matching. In CVPR, 2022

S. Sarto, M. Barraco, M. Cornia, L. Baraldi, R. Cucchiara "Positive-Augmented Constrastive Learning for Image and Video Captioning Evaluation«, CVPR 2023 Highlight

Hallucination

And it hallucinates less than previous metrics ©

	FC	DIL	ActivityNet-FOIL
	Acc. (1 Ref)	Acc. (4 Refs)	Accuracy
BLEU-1	65.7	85.4	60.1
BLEU-4	66.2	87.0	66.1
ROUGE	54.6	70.4	56.7
METEOR	70.1	82.0	72.9
CIDEr	85.7	94.1	77.9
MID	90.5	90.5	-
CLIP-S	87.2	87.2	-
EMScore	-	-	89.5
DACS	89.9	89.9	90.1
FAC-5	(+2.7)	(+2.7)	(+0.6)
RefCLIP-S	91.0	92.6	-
EMScoreRef	-	-	92.4
RefPAC-S	<u>93.8</u> (+2.8)	<u>95.2</u> (+2.6)	<u>93.5</u> (+1.1)

We extend our analysis to two datasets for detecting hallucinations in textual sentences, namely FOIL² and ActivityNet¹.

Image	Candidate Captions	Evaluation Scores			
	A silver knife containing many carrots with long, green stems.	CLIP-S 0.942	PAC-S 0.854		
	A <i>silver bowl</i> containing many carrots with long, green stems.	CLIP-S 0.912	PAC-S 0.893		
:6	A person tries to catch a <mark>ball</mark> on a beach.	CLIP-S 0.781	PAC-S 0.798		
	A person tries to catch a frisbee on a beach.	CLIP-S 0.759	PAC-S 0.828		
	A baby horse is seen standing in between another elephant's legs.	CLIP-S 0.782	PAC-S 0.793		
	A baby elephant is seen standing in between another elephant's legs.	CLIP-S 0.769	PAC-S 0.820		
	Different kinds of food on a plate with a cup.	CLIP-S 0.682	PAC-S 0.758		
	Different kinds of food on a plate with a fork.	CLIP-S 0.676	PAC-S 0.789		

Yaya Shi, Xu Yang, Haiyang Xu, Chunfeng Yuan, Bing Li, Weiming Hu, and Zheng-Jun Zha. EMScore: Evaluating Video Captioning via Coarse-Grained and Fine-Grained Embedding Matching. In CVPR, 2022 Ravi Shekhar, Sandro Pezzelle, Yauhen Klimovich, Aur´elie Herbelot, Moin Nabi, Enver Sangineto, and Raffaella Bernardi. FOIL it! Find One mismatch between Image and Language caption. In ACL, 2017.

Different Cross-Modal Features

PAC-S achieves the best results across *all cross-modal backbones* and almost all datasets, overcoming correlation and accuracy scores of other metrics by a large margin.

	Flickr8k-Expert		k-Expert	Flickr8k-CF		VATEX-EVAL		Pascal-50S	FOIL	ActivityNet-FOIL
		Kendall τ_b	Kendall τ_c	Kendall τ_b	Kendall τ_c	Kendall τ_b	Spearman ρ	Accuracy	Accuracy	Accuracy
CLIP ViT-B/16	CLIP-S	51.7	52.1	34.9	18.0	-	-	81.1	90.6	-
	EMScore	-	-	-	-	24 1	31.4	-	-	90.0
	PAC-S	54.5	54.9	35.9	18.5	26.8	34.7	82.9	91.1	90.7
		(+2.8)	(+2.8)	(+1.0)	(+0 .5)	(+2.7)	(+3.3)	(+1.8)	(+0.5)	(+0.7)
CLIP ViT-L/14	CLIP-S	52.6	53.0	35.2	18.2	-	-	81.7	90.9	-
	EMScore	-	-	-	-	26.7	34.7	-	-	89.0
	DACS	55.4	55.8	36.8	19.0	28.9	37.4	82.0	91.9	91.2
	rac-5	(+2.8)	(+2.8)	(+1.6)	(+0.8)	(+2.2)	(+2.7)	(+0.3)	(+1.0)	(+2.2)
OpenCLIP ViT-B/32	CLIP-S	52.3	52.6	35.4	18.3	-	-	81.2	88.9	-
	EMScore	-	-	-	-	24.8	32.2	-	-	88.2
	PAC-S	53.6	53.9	36.1	18.6	25.4	33.1	82.4	90.1	89.5
		(+1.3)	(+1.3)	(+0.7)	(+0 .3)	(+0.6)	(+0.9)	(+1.2)	(+1.2)	(+1.3)
OpenCLIP ViT-L/14	CLIP-S	54.4	54.5	36.6	18.9	-	-	82.5	92.2	-
	EMScore	-	-	-	-	27.0	35.0	-	-	90.7
	PAC-S	55.3	55.7	37.0	19.1	27.8	36.1	82.7	93.1	91.2
		(+0.9)	(+1.2)	(+0.4)	(+0.2)	(+0.8)	(+1.1)	(+0.2)	(+0.9)	(+0.5)

S. Sarto, M. Barraco, M. Cornia, L. Baraldi, R. Cucchiara "Positive-Augmented Constrastive Learning for Image and Video Captioning Evaluation», CVPR 2023 Highlight

Qualitative Results

Image	Candidate Captions	Evaluation Scores		Image	Candidate Captions	Evaluation Scores	
	Two white dogs running.	CLIP-S 0.530	PAC-S 0.500		A man and young girl eat a meal on a city street .	CLIP-S 0.769	PAC-S 0.764
	A man riding a motorbike kicks up dirt.	CLIP-S 0.486	PAC-S 0.542		A small brown and white dog running through tall grass.	CLIP-S 0.752	PAC-S 0.820
	Little girl in bare feet sitting in a circle.	CLIP-S 0.524	PAC-S 0.431	Solo-	A man jumps while snow skiing.	CLIP-S 0.512	PAC-S 0.503
	A white dog runs in the grass.	CLIP-S 0.426	PAC-S 0.456		A man is hiking on a snow-covered trail.	CLIP-S 0.464	PAC-S 0.567
	Four woman wearing formal gowns pose together and smile.	CLIP-S 0.700	PAC-S 0.730		Two girls walking down the street.	CLIP-S 0.583	PAC-S 0.556
	A man in a wetsuit surfs.	CLIP-S 0.613	PAC-S 0.762		A dog lies down on a cobblestone street.	CLIP-S 0.550	PAC-S 0.562
	Boy with a red crown in a shopping cart.	CLIP-S 0.385	PAC-S 0.467		A woman is signaling is to traffic , as seen from behind.	CLIP-S 0.753	PAC-S 0.767
	People stand outside near a concrete wall and a window.	CLIP-S 0.359	PAC-S 0.509		A man rides a bike through a course.	CLIP-S 0.714	PAC-S 0.800

S. Sarto, M. Barraco, M. Cornia, L. Baraldi, R. Cucchiara "Positive-Augmented Constrastive Learning for Image and Video Captioning Evaluation», CVPR 2023 Highlight

Qualitative Results

Image	Candidate Captions	Evaluation Scores		Image	Candidate Captions	Evaluation Scores		
	A blue bird being held by a handler.	METEOR CIDEr CLIP-S 35.2 96.3 80.1	PAC-S 80.0		A passenger train in the snow.	METEOR CIDEr CLIP-S 26.8 89.7 83.5	PAC-S 83.1	
	A blue bird perched on a gloved hand.	METEOR CIDEr CLIP-S 18.6 39.0 76.1	PAC-S 82.1		A red train driving through a snow covered city.	METEOR CIDEr CLIP-S 27.2 72.6 81.4	PAC-S 85.7	
	A black boxer dog with a white underbelly and brown collar looks at the camera.	METEOR CIDEr CLIP-S 35.1 26.6 77.5	PAC-S 82.3		A dog pokes it's head out from under a pile of stuff.	METEOR CIDEr CLIP-S 25.8 60.5 67,5	PAC-S 75.6	
	A close up of a black pug.	METEOR CIDEr CLIP-S 11.6 21.1 71.0	PAC-S 83.5		A dog underneath a wooden beam.	METEOR CIDEr CLIP-S 22.0 38.9 63.9	PAC-S 81.6	
	Trains amble by the rail yard.	METEOR CIDEr CLIP-S 26.2 68.8 81.9	PAC-S 75.4	<u></u>	A large green coach with a bridge in the background	METEOR CIDEr CLIP-S 28.3 32.0 87.1	PAC-S 76.7	
	The red train and the yellow train on on the tracks.	METEOR CIDEr CLIP-S 14.7 28.3 79.8	PAC-S 81.6		Green bus and tan truck on a city street with a man waiting to cross the street.	METEOR CIDEr CLIP-S 34.0 17.8 79.2	PAC-S 79.4	

Want to know more?

Read the paper

https://arxiv.org/abs/2303.12112

https://github.com/aimagelab/pacscore

S. Sarto, M. Barraco, M. Cornia, L. Baraldi, R. Cucchiara "Positive-Augmented Constrastive Learning for Image and Video Captioning Evaluation», CVPR 2023 Highlight

Thank you!

Manuele Barraco

Sara Sarto

Nicholas Moratelli

Marcella Cornia

Lorenzo Baraldi

Rita Cucchiara

