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Memory

«Memory is the power or process of reproducing or recalling what has
been learned and retained especially through associative mechanisms»
Merriam-Webster dictionary

There are three major processes involved in memory:
Encoding, Storage and Retrieval




Human Memory

Human memory happens in many parts of the brain at once and some types of memories stick around longer than others:

- Sensory Memory (<1-4 secs): stores a snapshot of sensory experience in categorical stores outside of cognitive control.

- Short-term Memory (20-30 secs): deals with fresh information about which we have awareness. Has temporal decay and
chunk capacity limits.

- Working Memory (20-30 secs): a short-term memory applied to cognitive tasks. Retains information in order to manipulate
it using attention.

- Long-term Memory (extended period): information is largely outside of awareness but can be called into the working
memory to be used when needed.

N. Cowan
Neocortex Progress in Brain Research, 2009
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Memory in Al

Two big challenges in Al:

- Define models that can capture long term dependencies in data sequences
- Define models that can make multiple computational steps to complete a task

In both cases this requires that networks have memory




PART1 — Learning order dependency in sequence prediction problems

RNN; LSTM; GRU
Memory Network models



Recurrent Neural Networks: RNN
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Unrolled RNNs

RNN can be unrolled into feed-forward models: at each time step the output becomes the next input.
@ Like a deep neural network with indefinitely many layers.

The latent state of an RNN should give weights to samples in a time series, remembering important events.

Output

RNN
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Sequence input What time is it




RNN equations
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Tanh activation

An hyperbolic tangent function ensures that the values stay between -1 and 1 thus regulating the output
of the neural network.

It also adds a non-linearity to the model.

Credits M. Nguyen



Recurrent Neural Network: RNN

Output (t)

Hidden State (t-1)

Hidden State (t)

Data: Time series, text, audio, videos

RNNs can process variable
length sequences of inputs.

RNNs share the learnable weights
across different time steps.

—1—

D Learnable Weights

o Tanh Function

(t) Timestep

—1 N-dimensional state

Speech recognition
Sentiment analysis
Language modeling
Stock predictions



RNN training

The full sequence is a single training example.
Each instance in the unfolded network shares the same parameters.

The error can be accumulated for all the time steps and the weights are updated depending on the
whole sequence of hidden states.

If the model generates an output after every time step, errors are summed across time steps.
Thus, weight updates in all time steps are summed together.

s¢ = tanh(Ux; +Wsy_y)

i = (Vo) » By §) = Y By i) == Y wlog
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Backpropagation through time

RNNs consist entirely of differentiable operations. They can be trained using an extension of the
backpropagation algorithm: Backpropagation Through Time

Each time step in a RNN is like a fully connected layer.
Weight updates are calculated by applying the chain rule gradients across the unfolded network.
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Exploding /vanishing gradient

With multiple matrix multiplications gradient values might either grow or shrink exponentially.
Accumulation of large derivatives results in the model being very unstable and incapable of effective learning.

If derivatives are small, gradient contributions to learning from far away steps might become zero. Long-range
dependencies are not learned.

In practice, the range of learned contextual information is limited to approximately 10 time steps.
Inherently unstable over long timescales.
() (2 ’ Output
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Exploding /vanishing gradient

To avoid exploding gradients, gradient clipping at each timestamp can be used:
check if gradient > threshold and normalize it

g < c - g/ldl

To tackle the vanishing gradient problem:

- use RelU instead of tanh or sigmoid activation function
- initialize the W matrix with an identity matrix

- use gated cells such as LSTM or GRUs



Long Short Term Memory (LSTM)

Long Short-Term Memory (LSTM) to solve the problem of exploding/vanishing gradients.

LSTM memory cell: what an LSTM stores in its memory cell is regulated by layers with activations called
gates that decide which information to forget or to remember.

RNN LSTM
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Credits of C. Olah



Long Short Term Memory (LSTM)

Cell State (t-1) ( \ Cell State (t)

— (x) ()  —
Forget Input Output
gate gate gate
Yy VY
Hidden State (t-1) Hidden State (t)
— —1»>
Input (t)
The cell state memorizes relevant information The gates are neural networks that contain
and the gates learn which information to They generate values between 0 and 1.
forget or to remember.




LSTM gates — Forget Gate

Decides which information should be thrown away from the memory cell and whether to retain the memory or
discard it depending on the current input.

Sigmoid outputs close to 0 mean that information is going to be forgotten. Sigmoid outputs close to 1 mean that
information is going to be kept.

@ previous cell state

o forget gate output
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Credits C. Olah
Credits M. Nguyen



LSTM gates — Input Gate

Decides how much of the new information will be let through the memory cell and which values of the
memory to update with the new observations.

Sigmoid output 0 means not important, 1 means important.

tanh function compresses the values between -1 and 1 to regularize the network.
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Credits C. Olah
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LSTM gates — State Update

Updates the state based on the previous state, subject to forget and input changes.

o previous cell state

° forget gate output
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LSTM gates — Output Gate

Decides how much information will be passed the next time step and what is going to be produced
as output based on the current memory.

The hidden state contains information on previous inputs.

h/t @ previous cell state
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° input gate output
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LSTM
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Gated Recurrent Units

Gated Recurrent Unit (GRU) is a simplified version of LSTM which combines the Forget and Input gates
into a single Update gate. Typically used instead of standard LSTM.

Cell state and hidden state are also merged making the model easier to train.
GRUs have less weights and therefore are lighter and faster. No groundbreaking performance difference.
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Bidirectional LSTM

Bidirectional LSTMs train two models instead of one. Instead of observing only the past, the future is
also taken into account.

Two processing branches: the data flows from the beginning to the end and vice versa.
The two hidden states are combined.

This provides additional context to the network and results in faster and more effective learning.
The whole sequence must be available. Not suitable for online learning.
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Credits C. Olah



Convolutional LSTM

Traditional LSTMs have vectors as inputs. Convolutional LSTM (ConvLSTM) is an extension of LSTM to
tensorial data, e.g. images or convolutional feature maps.

Inputs, hidden states and gates of the ConvLSTM are 3D tensors.
Inputs and states are imagined as vectors standing on a spatial grid.

Multiplications with weights are replaced by the convolution operator ( *)

Ht—l—l; Ct+1

it = 0(Wai x Xy + Wiy x Hy1 + We 0Ciq + by)

Jt =0(Wypx Xo + Wi xHeo1 + WepoCioq + by)

Ct = froCi_q1 + iy otanh(Wye x Xy + Whe * Hy_1 + be)
0r = 0(Wyo % X + Who * He—1 + Weo 0 Cy + by)
H: = o o tanh(Cy)




Stacked LSTM

Stacked LSTM is an extension of the LSTM model that has multiple hidden LSTM layers where each layer contains a
different memory cells.

The first LSTM, rather than generating a single output, provides a sequence of outputs that are fed to the second
LSTM and so on.

Given that LSTMs operate on sequential data, the addition of layers adds levels of abstraction of input observations
over time.

Layer-2




Stacked LSTM

A situation in which it is advantageous to stack LSTMs is when we want to learn hierarchical representations of time-
sequence data e.g. a video sequence.

In stacked LSTMs, each LSTM layer outputs a sequence of vectors which will be used as an input to a subsequent
LSTM layer. This hierarchy of hidden layers enables more complex representation of the sequence data, capturing
information at different timescales.

Layerl Layer2

Predictions

Visual Input Visual Features Seqguence Leaming

Credits J. Donahue et al.



LSTM/GRU training

When training LSTM/GRU data must be organized in sequences

Input has different dimensionality with reference to traditional models such as CNNs:
convolutional layer :  (Batch_Size) x (Height) x (Width) x (Num_Channels)
recurrent layer : (Batch_Size) x (Num_Time_Steps) x (Feature_Dimension)

Instead of tensorial data LSTM/GRUs usually work with feature vectors that are organized
sequentially in time steps
The example is not fed to the layer all at once but one timestep at a time.



LSTM/GRU training

- If an output is provided for each timestep then error and gradients can be obtained for each step and
backpropagated through the previous ones.

- If the output is generated only at the end of the sequence there will only be a single error to backpropagate
through all timesteps.

The weights that are updated are the same since the same LSTM/GRU is used for each timestep. What changes
is the amount of gradients that are computed.

The cells learn when to allow data to enter, leave or be deleted through the iterative process of making guesses,
backpropagating error and adjusting weights via gradient descent.



Teacher Forcing

LSTMs can be trained autoregressively, i.e. the output at time t-1 can be fed as input at time t. This is the case of
LSTM for prediction and generation task.

Weights at early training stages might produce incorrect outputs. The LSTM will observe incorrect inputs and might
diverge.

As a solution the ground truth at time t-1 can be fed as input at time t (teacher forcing).

Test time

Train time

Free-running
Teacher forcing



Teacher Forcing

When using teacher forcing train and test data might not be distributed in the same way since the network will not

generate perfect outputs.
At test time small errors might accumulate and lead to inputs that the network has never seen before.

A possible solution is to alternate between teacher forcing and standard training sampling i.e. using either the
output of the LSTM or the ground truth as input for the next timestep.



LSTM In practice

LSTM/GRU training issues to consider :

Sequence length: sequences of variable lengths need to be padded to a fixed length to enable batch processing.
Data preprocessing can often be painful.

Attention window: in principle, LSTM/GRUs are able of processing longer sequences than vanilla RNNs. But for
long sequences one may want to fix a window of attention, making the current sample depend only on a
limited number of past observations.

Interpretation vs temporal patterns: evidence exists about difficulties of LSTM/GRUs to learn both the
interpretation of the input and temporal patterns at the same time. It is better to feed LSTM/GRUs with
meaningful features, e.g. pretrained convolutional features.

Overfitting: if the LSTM/GRU memorizes all the training data it is likely to overfit. Data augmentation and
regularization are important.



Memory Networks applications

LSTM/GRUs allow to operate over sequences of vectors: sequences in the input, sequences in the output, or
in the most general case both.

one to one

(1)

(2)

one to many many to one many to many many to many

Rectangle are vectors
Arrows represent functions

} I $ TR L T (e.g. matrix multiply).
(3) (4) (5)

el | Lol | NN S el | Input vectors are in red

=3 (=== 1= Output vectors are in blue
T T T T T T T T T Green vectors hold the state

(1) Processing without RNN, from fixed-sized input to fixed-sized output (e.g. image classification)

(2) Sequence output (image captioning takes an image and outputs a sentence of words)

(3) Sequence input (sentiment analysis where a given sentence is classified as expressing positive or negative sentiment)

(4) Sequence input and sequence output (machine translation: reads a sentence in French and then outputs a sentence in English)
(5) Synced sequence input and output (video classification where we wish to label each frame of the video)

Credits A. Karpathy



Memory Networks applications

Main applications examples

Text

Language Modeling
Speech Recognition
Machine Translation
Question Answering

Video

Visual Tracking
Video Analysis

Human Behavior Understanding

Multimodal
Image Captioning
Video Captioning
Visual Question Answering

Other

Interaction
Robotics
Audio Analysis
Automotive



VQA: Visual Question ANSWEIINE a agrawsletal, iccv 2015

many to one

VQA on the global image content

The LSTM is fed with features representing a textual question sentence.
The CNN fully connected layer provides content information about the image.

The LSTM output is combined with the image content representation and produces the required answer

CNN
A

4096 output units from last hidden layer 1024

(VGGNet, Normalized)

1000

1024

Convolution Layer

Convolution Layer
+ Non-Linearity

2x2x512 LSTM

Pooling Layer  + Mon-Linearity Pooling Layer

Fully-Connected
Fully-Connected MLP

1024

Poi r'nt-.ms.e Fully-Connected Softmax
multiplication

L 4
L 4

i
) ) N N a0
- Cd Cad Cd Cd

“How many horses are in

Fully-Connected

this image?”

Credits A. Agrawal et al.



Deep Visual-Semantic Alignments for Generating Image Descriptions

A. Karpathy, L. Fei-Fei, CVPR2015

one to many

Multimodal Recurrent Neural Network generative model.

The RNN takes a word, the context from previous time steps and defines a distribution
over the next word in the sentence.

The RNN is conditioned on the image information at the first time step.
START and END are special tokens.

“straw” “hat” END

START “straw” “hat”

Credits A. Karpathy, L. Fei Fei



Sequence to Sequence Learning with Neural Networks

|. Sutskever et al. Neurips 2014

many to many
— /@ M Encoder-Decoder structure.

The model reads an input sentence “ABC” and produces “WXYZ” as the output
t t 1 sentence. It stops after generating the end-of-sentence token.

s Input and output lengths are decoupled.

SEEES S Output generation is performed autoregressively.

ENCODER DECODER

I — M good

T
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( Embedding )
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how are you ?

Credits I. Sutskever et al.



Am | Done? Predicting Action Progress in Videos

F. Becattini et al. ACM TOMM 2020

many to many

Muhammad Ali boxing

In 1977 Muhammad Ali was able to estimate the
progress of his opponent Michael Dokes so well
that he could dodge 21 punches in 10 seconds...

Young Frankstein movie

The monster is not able to correctly estimate
the progress of the blind priest’s actions and
coordinate his movements accordingly...




Am | Done? Predicting Action Progress in Videos

F. Becattini et al. ACM TOMM 2020

many to maity ProgressNet predicts the progress of the ongoing action at each time step.

Predictions are made framewise, observing the whole past history.

t t 1

il Faster R-CNN applied framewise + box linking to predict action tubes.

N . e Two stacked LSTM layers with 64 and 32 hidden units are fed with features representing the
D E action region and global scene.

Shared Weights
P
—tp| SPP FC7 LSTM ] LSTM ] FCg |- oo
GG-16/( | | o ______._ GG-16 FC6 .
: :
1 I
: ! Localization
1 I
I : ROI
I
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b= 2
ProgressNet
Action Detection
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Action progress Pi = te —

Credits F. Becattini et al.



Am | Done? Predicting Action Progress in Videos

F. Becattini et al. ACM TOMM 2020

FloorGymnastics

1 ]

.
\ 5
-

" g |_‘ - e i
Predlcted
Progre

Credits F. Becattini et al.



s a Cell State enough?

N

Knowledge is compressed into a single dense vector.
The memory is addressable as a whole.

It lacks the ability to address individual elements.

State to state transition is global: updating at each time step.

It lacks the ability to add new concepts from data streams
without forgetting the previous learned ones

M-dimensional
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s Cell State enough?
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Knowledge is compressed into a single dense vector.
The memory is addressable as a whole.

It lacks the ability to address individual elements.

State to state transition is global: updating at each time step.

It lacks the ability to add new concepts from data streams
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s Cell State enough?
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Knowledge is compressed into a single dense vector.
The memory is addressable as a whole.

It lacks the ability to address individual elements.

State to state transition is global: updating at each time step.

It lacks the ability to add new concepts from data streams
without forgetting the previous learned ones
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s Cell State enough?

Knowledge is compressed into a single dense vector.

The memory is addressable as a whole.

It lacks the ability to address individual elements. 1] _
X append

State to state transition is global: updating at each time step. T v

It lacks the ability to add new concepts from data streams
without forgetting the previous learned ones




PART 2 - Learning algorithmic tasks

NTM; MANN; End-to-End Memory
Network; KV Memory Network; MANTRA
Memory Augmented Network models



Deeper Al tasks requirements

In complex tasks, rather than artificially increasing the size of the hidden state in the RNN or LSTM, we would like
to arbitrarily increase the amount of knowledge we add to the model while making minimal changes to the model.

We can augment the model with an independent memory that acts as a knowledge base from which the network
can read and write on demand. This benefits the following:

- Larger memory

- Memory increase should not require increasing number of parameters
- Memory compartmentalization

- Read/Write operations can follow algorithmic rules

This is the Memory Augmented Neural Network (MAN/MANN) model.



Memory Augmented Neural Networks

MANN model: gives a neural network an external memory that acts as a knowledge base and the capacity to
learn how to interact with it.

The recurrence reads from a possibly large external memory multiple times before emitting a symbol.

Think of the Controller network as the CPU and the external memory as the RAM.

Output

Control

Memory |Read | Controller e
1 accesses
Module [ \yiite Module memory
(read, write).
Input

Memory
can be
stack or

list/set of

vectors.




Memory Augmented Neural Networks

In MANNSs the Memory Controller is trained to write symbols in memory and to read what is necessary to produce
the output.

Like an LSTM but, instead of incrementally creating a state, it keeps in memory a set of independent states.

Unlike LSTMs, MANNSs encourage local changes in memory. This helps to find the structure in the training data and
to generalize to sequences in algorithmic tasks.



RNN/LSTM

Input Sequence

LSTM/GRU

Inputs are fed to the LSTM one-by-one, in order.

The LSTM has only one chance to look at an
input symbol.

Memory Augmented Neural Networks

Memory Augmented Neural Network

All Input

Selectedlinput Addressinglsignal

CONTROLLER
network

Place all input symbols in memory and let the
model decide which part to read next.



Working Memory

While LSTM/GRU emulate human Short-term memory, MANNs emulate the process of the Working Memory in the human brain to
some extent.

Neocortex
Innate and Long-term memory

Pre-frontal cortex Working memory is the whole framework
Sensory memory —> ¢

of retrieval structures and processes used for

the temporary storage and manipulation of
new information.

Working memory H

Hippocampus
Short-term memory

Credits D. Kumaran et al.
modified



Memory Augmented Neural Networks (MANN)

O

MANN models have an external memory and four components:
| input feature map: converts the input to the internal feature representation

G generalization: updates old memories given a new input
O output feature map: produces a new output given the current input and memory state

R response: converts the output into the desired response format

I(x)

Input x

Controller

Output

Memory is an array of objects m;




The IGOR Model

| Input: converts a sequence of input sentences x; into the internal feature representation.

L ; ——{Input Feature Map

— " I(x;)

G Generalization: updates the old Memory content (compress and generalize memory for future use)

| I

| | | | |\ Generalization

1

(0 Output: given an input and the memory state, computes the output in the feature representation space
MI
Output Feature Map ——— O
R Response: decodes the output features to generate the answer in the desired format.

o ———» Response > 7




Memory Network models

Memory networks
Memory is a single hidden state vector that
encodes all the temporal information.

Memory is addesssable as a whole
(all the past information is encoded in the state
vector).

State to state transition is unstructured and
global.

Find some structure in the training data.

The number of parameters is tied to the size of
the hidden state.

Memory Augmented Networks

Add an external memory matrix with increased
storage capacity.

Memory is element-wise addressable (relevant
items of information can be accessed selectively).
Relies on attention to work.

State to state transitions are obtained through
read/write operations.

Find the structure in the training data, but also
generalize to long sequences in algorithmic tasks.

The number of parameters is not tied to the size of
the memory. Increasing the number of memory
slots will not increase the number of parameters.



Episodic vs Persistent Memory

Episodic Persistent

(L

Ny reset E _ Teset E
[ — — [ —
Mem Mem Mem
Net Net Net

Dataset Training

>

Dataset Training

»
>

Example 1 Example 2 - Example N Example 1 Example 2 - Example N



Episodic memories

Typically in MANNs the memory is just episodic.

For each example presented to the network we start from an empty memory and perform a sequence of read /
write steps.

The Controller is trained with the Task Loss.



Neural Turing Machine

A. Graves, G. Wayne, |. Danihelka, 2014

Neural Turing Machine (NTM) is a MANN that learns to read and write data from the external memory at different
time steps to solve a given task.

NTM contains:
- a Network Controller that is responsible for making the interface between the input sequence and the output
representation and the memory through read and write heads.

- a Memory Bank regarded as an array of vectors. External Memory

N X M matrix
N locations for

M size vector
External Input  External output

Read head
Controller
(NN with parameters
for adjusting weights)
Write head

The heads, with the feature generated by the
controller, compute the addressing to Credits S. Malekmohammadi
read/write in memory



Neural Turing Machine

A.Graves, G. Wayne, |. Danihelka 2014

The goal of NTM is to learn an algorithmic task.

NTM learns:

What to write to memory

When to write to memory
When to stop writing

Which memory cell to read from

How to convert result of read into final output



Neural Turing Machine

A.Graves, G. Wayne, |. Danihelka 2014

General issue: how to allow addressing in memory? Sometimes we want to select a single element, other times a
small subset or other times the whole memory.

The operations argmax or select index are not differentiable so they cannot be exploited to train with gradient
descent.

Memory M Memory M
BackProp
Selection
—_—m < - *_ -
N N
Read/write Read/write
operation operation BackProp
Selection
—_—) <+ - 9(_ -




NTM blurry operations

Blurry operations: interact to a greater or lesser degree with all the elements in memory rather than addressing a
single or few elements directly.

The degree of blurriness is determined by an “attentional focus” mechanism that constrains each Read and Write
operation to interact with a small portion of the memory while ignoring the rest.

The portion of memory brought into attentional focus is determined by normalized weights emitted by the heads.

Normalized weights over N elements of the memory

. = attenti ) .
z w; =1 e A weight of 1 focuses all the attention on the
L corresponding memory location.

S— A weight of 0 discards that memory location.

result

Credits A. Graves et al



NTM addressing mechanisms

Attention weights are generated by the Controller network with two distinct addressing mechanisms with

complementary facilities:

Content Based addressing

Focuses attention on locations based on the
similarity between the current memory values
and values emitted by the controller.

Example of application: VQA - score sentences
by similarity with a question.

Weights as softmax of similarity scores.

Location Based addressing

Focuses attention on locations based on the
address of the location.

Example of application: Copy Task - move to
address (i+1) after writing to index (i)

Weights = Transition probabilities.




NTM addressing steps

Steps for generating w,

1. Content Addressing
2. Peaking
3. Interpolation
4.  Convolutional Shift (Location Addressing)
5. Sharpening
. ™M,
Previous Memory state ; ti
(vectors and weights) I Wy _1-
o @ @S
Memory key (length M) —— kt_—% CA
produced by the Controller - 6 | 9 g
e Wy
Control parameters q gt | —\1,9 Wy
produced by the Controller . S¢ i CS 9
| i v Wt
SIS S

Credits A. Graves et al



Content-based addressing and peaking

Step 1, 2: Content Addressing and peaking

The Controller extracts feature k, from the input using a deep
network (an LSTM or a feedforward network) and uses it to

compute the addressing weights. Content addressing

wy (i) +— softmax (5; - K [ke, M (4)])

B, is the temperature of the softmax and is used to amplify or M, e L
j FrEVIOUE sigle t
attenuate the difference in scores.

PreVState w (i) = exp(Be(< My(2), ke >))
Mt— ' 2_; exp(Be(< My (i), ke >))

_____________

w t l Cosine similarity

c 1 Softmax

Outputs

Credits A. Graves et al



Content-based addressing

Content-based addressing

Each head (whether read or write) produces a length M key vector k, that is compared to each vector M,(i) by a cosine
similarity measure K and produces a normalised weighting w, applying a softmax function on the score K.

exp ( B K ke, M, ;ﬂ)
Z.;‘ exp (.i, K :k,. M, (,jﬂ)

wy ()

o

K[uv] = _
]|



Interpolation

wi = giwi + (1 — ge)we—1

Prev. State

............

: ! w
kt§ CA !

Controller
Outputs

Step 3: Interpolation

In content-based addressing focus is only based on the current
input. Interpolation also accounts for previous attention.

It results into a new weight that accounts for both the content-
based focus and the focus in the last timestep.

Interpolation

wi — gewi + (1 — g1) Wy

Credits A. Graves et al



Convolutional Shift

N—1
we (i) = wag(] )s¢(j — 1)
J=0

Prev. State

.............

Controller
Outputs

CS

St normalized shift distribution

Step 4: Convolutional Shift

Convolutional shift

6 Suit

Convolutional shift handles a shift of focus. It smoothly shifts
the weights left or right.

It creates a focus from a range of rows where the convolution
function is a linear weighted sum of rows.

This mechanism allows NTM to perform basic algorithms like
copy and sort. It is very close to the head shifting in a classical
Turing Machine.

Credits A. Graves et al



Sharpening

lSJtseepSSZWShfc:F;f\glrngen as: wy(i) = W)
D SO

Prev. State

St cs © .,

Controller
Outputs

Sharpening

wy (1) ox Wy (i)™

Wi
Wy 'l

Credits A. Graves et al



Blurry Read Operation

Read result is a weighted sum

N—-1
re = Y wy(i)My(i)
1=0

Given:

- memory matrix M, of size NxM
- w, (weight vector) of length N

- t (time index)

‘ attention

MEmory

Credits A. Graves

eta



Blurry Write Operation

Write is the combination of erase and add operations:
- e, isan erase vector
- a,is alenght M add vector

Mt(Z) = Mt_l(@)(l — wt(i)et) + Wy (i)at
\ Y J — E——

Erase Component Add Component

The memory writing process composes of previous state
and new input and implements a similar mechanism as
the forget and input gates in LSTM

Given:

- memory matrix M, of size NxM
- w, (weight vector) of length N

- t (time index)

write value

attention

NN | R N Ll old memory

1 T K o 23
| = = I ‘ MEENY TTIETTIOrY

Credits A. Graves et al



NTM Controller design

The attention mechanism decides which parts of the memory the model must focus on.
The controller extracts features k, from the input using a deep network and uses it to compute the attention

weights.

The NTM Controller can be either a Feed-forward network or an LSTM

- Feed-forward: faster, more transparency and interpretability about the learned function
- LSTM: more expressive power, does not limit the number of computations per time step

Comparing the controller to the CPU in a digital computer and the memory matrix to the RAM, then the hidden
activations of the recurrent controller are akin to the registers in the processor.



NTM Controller unfolded

Once the head has updated its weight vector, it is ready to operate on the memory.
If it is a read head, it outputs a weighted combination of the memory locations: the read vector. This is then fed
back to the controller at the following time-step.

If it is a write head, the content of the memory is modified according to weights with an erase and an add vector,
both produced by the controller.

=
:]
N
|
n
£
@

Controller
| LSTM,_, ) | LSTM, 1 | LSTMe [ :]
- - a3 @ . .
_____ o Myy mmmfemme M, —-eefeoaos r; E wy (1) M, (7),
Read heads :
1

Mt(Z) = Mt_l(%)(l — wt(i)et) -+ Wy (i)at

!
lkd
:
B

)

Write heads

Credits A. Graves et al



End-to-end training

Read and write operations are made of products between attention weights and memory. Both are differentiable
with reference to both the memory and the attention weights.

This leads to a fully differentiable model.

It is possible make an end-to-end training with SGD/RMSProp/Adam Optimizers.

E : : v :
Reading r; — Wy (Z)Mt (’8), External Input  External output M
: 1 x 7 I
: — | Read head | ¥———

Mt (/L) — Mt_l(i) []. - wt(z)et] Cpntroller weighted | N
Writing _ (NN with parameters access <\ —T

Mt(@) YR Mt(ﬁ) 1 ’lUt(Z) ay ‘ for adjusting weights) L

— | Write head | ——— | _|

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Backpropagation algorithm end-to-end

Credits S. Malekmohammadi



NTM applications

The goal of NTM is to learn an algorithm: taking input and output and learning algorithms that map from one to
the other, e.g. taking an input and copying it.

We feed the NTM with random inputs, with the corresponding expected outputs from the algorithm we intend
to learn.

No prior knowledge on the nature of the algorithmic task is given to the NTM.



NTM copy task

Copying task: the output should be the same 0, 1 pattern of the input. The network will store the input sequence
in the memory and then it will read it back from the memory.

The network is trained with sequences of length 1 to 20 and performs well even if the input length is 80

Training Convergence
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Credits S. Sukisuki



NTM copy task

The NTM is able to generalize to sequences of any length, including sequences longer than what it saw during
training.

Lenght 10 Lenght 20 Lenght 30 Lenght 50
Lenght 120

Targets

Outputs

Time -

Copy task: NTM trained on sequences of lenght 20

Credits A. Graves



LSTM copy task

The same task with LSTM

Lenght 10 Lenght 20 Lenght 30 Lenght 50
Lenght 120
Targets
Outputs

Time »

Copy task: NTM trained on sequences of lenght 20

Credits A. Graves



NTM tasks

Task Network Size Number of Parameters
NTM with LSTM NTM with LSTM
controller * LSTM * controller * LSTM *
Copy 3x 100 3x256 67K 1.3M
Repeat Copy 3x100 3x512 66K 5.3M
Associative Recall 3x 100 3x256 70K 1.3M
N-grams 3x 100 3x128 61K 330K
Priority Sort 2 x100 3x128 269K 385K

* 3 stacked LSTM

Credits A. Graves



NTM tasks

cost per sequence (bits)
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NTM In practice

https://colab.research.google.com/drive/117-va-
TjO5BW39Savzba5qg6uhTu-gZPA?usp=sharing



https://colab.research.google.com/drive/1I7-va-TjO5BW39Savzba5q6uhTu-gZPA?usp=sharing
https://colab.research.google.com/drive/1I7-va-TjO5BW39Savzba5q6uhTu-gZPA?usp=sharing

Application: Social Reasoning for Pedestrian Trajectory Prediction
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Is understanding social interaction important?



Application: Social Reasoning for Pedestrian Trajectory Prediction

== Past
== Fyture

Yes, the pedestrians move observing also the behaviors of others around them.



SMEMO: Social MEMOry for pedestrian trajectory prediction

F. Marchetti et al., 2022
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SMEMO is equipped with an external storage that acts as a episodic working memory where the past
information from multiple agents in a scene can be stored and later recalled to make predictions.



SMEMO: Architecture
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SMEMO: Addressing
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The memory controller outputs at each timestep a feature used by the read/write heads to generate a key.
@ The key is used to find relevant locations in memory via cosine similarity.

Access weights are obtained by softmax normalizing the similarities.




SMEMO: Reading

Social features
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Separate read heads perform memory addressing to obtain K social features.

Each social feature will condition the decoder to output a separate future prediction.

The social features are pooled together and fed back autoregressively.
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SMEMO: Writing
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A single write head performs memory addressing and generates erase and add vectors.

Using the addressed memory content, an Erase Matrix and an Add Matrix are generated.

Social Pooling guarantees invariance to agent ordering.
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Quantitative Results

K: number of predictions

Method ETH HOTEL | UNIV ZARA1 | ZARA2 | AVERAGE
SoPhie* [8] 0.70/1.43 | 0.76/1.67 | 0.54/1.24 | 0.30/0.63 | 0.38/0.78 | 0.54/1.15
Next* [67] 0.73/1.65 | 0.30/0.59 | 0.60/1.27 | 0.38/0.81 | 0.31/0.68 | 0.46/1.00
S-BiGAT* [33] 0.69/1.29 | 0.49/1.01 | 0.55/1.32 | 0.30/0.62 | 0.36/0.75 | 0.48/1.00
GOAL-GAN* [30] | 0.59/1.18 | 0.19/0.35 | 0.60/1.19 | 0.43/0.87 | 0.32/0.65 | 0.43/0.85
Introvert* [23] 0.42/0.70 | 0.11/0.17 | 0.20/0.32 | 0.16/0.27 | 0.16/0.25 | 0.21/0.34
Social-GAN [6] 0.81/1.52 | 0.72/1.61 | 0.60/1.26 | 0.34/0.69 | 0.42/0.84 | 0.58/1.18
CGNS [68] 0.62/1.40 | 0.70/0.93 | 0.48/1.22 | 0.32/0.59 | 0.35/0.71 | 0.49/0.97
ETH/UCY SR-LSTM [59] 0.63/1.25 | 0.37/0.74 | 0.51/1.10 | 0.41/0.90 | 0.32/0.70 | 0.45/0.94
MATF [69] 1.01/1.75 | 0.43/0.80 | 0.44/0.91 | 0.26/0.45 | 0.26/0.57 | 0.48/0.90
STGAT [36] 0.65/1.12 | 0.35/0.66 | 0.52/1.10 | 0.34/0.69 | 0.29/0.60 | 0.43/0.83
SGCN [34] 0.63/1.03 | 0.32/0.55 | 0.37/0.70 | 0.29/0.53 | 0.25/0.45 | 0.37/0.65
MANTRA [14] 0.48/0.88 | 0.17/0.33 | 0.37/0.81 | 0.27/0.58 | 0.30/0.67 | 0.32/0.65
Transformer [18] 0.61/1.12 | 0.18/0.30 | 0.35/0.65 | 0.22/0.38 | 0.17/0.32 | 0.31/0.55
PECNet [31] 0.54/0.87 | 0.18/0.24 | 0.35/0.60 | 0.22/0.39 | 0.17/0.30 | 0.29/0.48
PCCSNet [62] 0.28/0.54 | 0.11/0.19 | 0.29/0.60 | 0.21/0.44 | 0.15/0.34 | 0.21/0.42
Trajectron++ [28] | 0.39/0.83 | 0.12/0.19 | 0.22/0.43 | 0.17/0.32 | 0.12/0.25 | 0.20/0.40
Social-NCE [70] - 10.79 - /0.18 - 0.44 - /0.33 - /0.26 - /0.40
AgentFormer [25] | 0.45/0.75 | 0.14/0.22 | 0.25/0.45 | 0.18/0.30 | 0.14/0.24 | 0.23/0.39
LB-EBM [64] 0.30/0.52 | 0.13/0.20 | 0.27/0.52 | 0.20/0.37 | 0.15/0.29 | 0.21/0.38
Expert-Goals [32] | 0.37/0.65 | 0.11/0.15 | 0.20/0.44 | 0.15/0.31 | 0.12/0.25 | 0.19/0.36
SMEMO 0.39/0.59 | 0.14/0.20 | 0.23/0.41 | 0.19/0.32 | 0.15/0.26 | 0.22/0.35
SDD K=5 K=20
Method | ADE | FDE Method [ ADE | FDE | Method [ ADE | FDE
DESIRE [19] 1925 3405  Trajectront+ [28]* 19.30 32.70 MANTRA [14] 896  17.76
Rideletal. [61] 14.92 2797  SoPhie [8] 1627 2938 PCCSNet [62] 862  16.16
MANTRA [14] 13.51 2734  EvolveGraph [60]  13.90 2290 PECNet [31] 996  15.88
PECNet [31] 12.79 2598  CF-VAE [63] 12.60 2230 LB-EBM [64] 8.87 1561
PCCSNet [62] 1254 - Goal-GAN [30] 1220 22.10  Expert-Goals [32] 1049  13.21
TNT [29] 1223  21.16  P2TIRL [65] 12.58 2207 SMEMO 811  13.06
SMEMO 11.64 2112  SimAug [66] 1027 19.71



Qualitative Results

(a) Social Multimodal Prediction (d) GT + best prediction




Qualitative Results




Qualitative Results: Real Dataset

Collision Avoidance Group Following



Synthetic Social Agents Dataset (SSA)

— Past
— Future
The agents (3 to 10)...
@ e start from one point on a unit circumference...
© .8  ..at different speeds (constant)... .
V. -

e ..all go towards the center...
e ...and must go to the opposite side

Constraint
If two or more agents are close (below a certain
distance threshold):

& e the one with the highest @ .
speed passes

e and the others stop.




Quantitative Results: SSA Datasets

Method ADE | | FDE | | Kendall 1
Linear 0.091 0.141 0.67
MLP 0.087 0.138 0.65
GRU ENC-DEC 0.087 0.138 0.64
Expert-Goals [32] 0.095 0.149 0.49
PECNet [31] 0.045 0.136 0.71
Trajectron++ [28] 0.084 0.132 0.59
Social-GAN [6] 0.051 0.085 0.67
AgentFormer [25] 0.040 0.064 0.70
SR-LSTM [59] 0.036 0.068 0.76
SMEMO 0.027 0.038 0.83




Qualitative Results: SSA Dataset

GROUND-TRUTH SMEMO



Qualitative Results: SSA Dataset

GROUND-TRUTH SMEMO



SMEMO: Explainability

Deep learning methods lack the We want to understand which neighbors
& interpretability of the information have contributed to the correct generation

learned from the network. of each position of the future trajectory.
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Example explainability
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Example explainability
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Meta-Learning with Memory-Augmented Neural Networks

A. Santoro, et al. ICML 2016

MANN for one-shot learning task: situations when only a few training examples are presented one-by-one.

The model must learn to associate an image with a label presented with a time-offset

Must learn to hold data samples in memory until the appropriate labels are presented at the next time-step, after

which sample-class information can be bound and stored for later use

External Memory

|

/

¥
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= —— +
U
[ || Backpropagated

Signal

Bind and Encode

A A

At each time ¢ the correct label
for the previous sample image is
presented

The network must learn the
association between the image
and the last label given

Credits A. Santoro et al.



Reading

Reading is the same as NTM: when retrieving, a memory M, is addressed using the cosine similarity measure
which is used to produce a read-weight vector.

kt ¥ Mt(Z)
e ([} ML (2) |]

K (ke, My (i) =



LRUA Writing

A new memory access method by content with reference to NTM.

Least Recently Used Access criterion:
LRUA writes new information into rarely-used locations, preserving recently encoded information or into the least used
location (update of the memory with newer, possibly more relevant information).

The distinction between these two options is accomplished with an interpolation between the previous read weights
and weights scaled according to usage.

U U i w Updated by decaying the previous usage weights
Wy < YW T Wy T Wy and adding the current read and write weights.

w r lu Convex combination of the previous read
Wi <0 ((}')Wt— Rer (1 0((}:))Wt— | weights and previous least-used weights.

lu:

) =

0 Hwi(i) >miwi.n
{ ¢ (7) (o) Least-used weights

1 ifwi(i) < m(wi,n)



Training

Data samples are held in memory until the label is presented.
Then sample-class information is bound into an encoding and stored for later use.

At every episode labels are shuffled across datasets to avoid learning image-to-label fixed associations.

At test time, when the input is presented again, the information is retrieved from memory and decoded to predict the
correct label.

External Memory External Memory
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Credits A. Santoro et al.
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Omniglot: over 1600 separate classes with only a
few examples per class.

After training on 100k episodes with five randomly
chosen classes with a randomly chosen label,
there are a series of test episodes.

The model must predict the class labels for never-
before-seen classes of a disjoint test set.



Result: Human vs Machine

INSTANCE (% CORRECT)
MODEL lST 2ND 3RD 4TH STH 10TH
HUMAN 34,5 57.3 70.1 71.8 81.4 924
FEEDFORWARD | 24.4 19.6 21.1 199 228 195
LSTM 244 495 553 61.0 63.6 62.5
MANN 36.4 82.8 91.0 92.6 94.9 98.1
1st 2nd 5th 10th
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(c) LSTM, fifteen classes/episode, five-character string labels

Test-set classification using one-
hot encodings of labels and five
classes presented per episode.
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(b) MANN, five random classes/episode, one-hot vector labels
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(d) MANN, fifteen classes/episode, five-character string labels



End-To-End Memory Networks

Sukhbaatar et. al. NeurlIPS 2015

Uses a network with external memory to perform Question Answering.
All sentences are stored in the memory in separate slots.
To answer a query, the sentence which is most relevant is found in the memory through an attention mechanism.

The retrieved sentence is then concatenated with the question to form a new query and look for a new relevant
sentence.

The process is iterated until the model can generate an appropriate answer to the original query.
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End-To-End Memory Networks

Sukhbaatar et. al. NeurlIPS 2015
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Credits Sukhbaatar et. al.



End-To-End Memory Networks

Sukhbaatar et. al. NeurlIPS 2015

Multi hop: different Memories and Outputs for each hop
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Results

Question Answering (QA)

Mean error LSTM MemN2n MemN2n MemN2n
(%) 1 layer 2 layers 3 layers

bAbl dataset 25.8 15.6 13.3

Language Modeling

Error (Perplexity) LSTM | MemN2n | MemN2n MemN2n
3 Iayers 5 Iayers 7 Iayers

Penn Treebank
Dataset

Text8 Dataset 184 154 178 154 147



Episodic vs Persistent Memory

Episodic Persistent

(L
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Mem Mem Mem
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MANNSs with persistent memory

Alternatively to the case of episodic memory MANNSs can have persistent memory

- With NTM, memory is continuously written to and read from, with network learning when to perform
memory read and write operations.

- Using memory as a persistent storage means focusing on retrieving information. The Controller is
trained to write in memory only the examples meaningful for the task.



Visual Question Answering with Memory-Augmented Networks

Ma et al.; CVPR2018

SOTA methods learn to respond to the
majority of training data rather than
specific scarce exemplars.

Given an input question and a
reference image, the task is to
predict the most accurate answer.

VQA systems [2, 21] exclude
the rare answer “cucumber”
from the training set.

Q: What is the dark green vegetable?
A: Cucumber (Ours)  A: Broccoli [21]  A: Lettuce [2]

[2]: S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Batra, C. L. Zitnick, and D. Parikh. VQA: Visual Question Answering. In Proc. IEEE Int. Conf. Comp. Vis., 2015
[21]: J. Lu, J. Yang, D. Batra, and D. Parikh. Hierarchical question-image co-attention for visual question answering. In Proc. Advances in Neural Inf. Process. Syst., 2016.



Architecture

What | [is | |the | |dark || green || vegetable |  question embedding

_} . i 5 I — Eredlcted answers )
% )] %] (] Sigmoid or cucumber 0.55
o - - < E softmax il -
lettuce 0.14
Co-attention @ — > LSTM ' —— 0.08 1
Concatenation ' ) l
rlte Read . basil 0.06 |
B
_}, -_
Visual embedding =501 h___] |_’L
Visual image CNN feature Augmented memory

Co-attention attends to the most relevant image regions as well as textual word.

Augmented memory maintains a long-term memory of scarce and uncommon question and answer pairs.

The controller LSTM determines when to write or read from the external augmented memory.



Memory details: reading

Sigmoid or
e softmax
Write Read
= |

Augmented memory

h; = LSTM(x;,h;_1)

~ hy - M, (4)
[ [ ML ()

D(hy, M,(1))

w; (i) = softmax (D (h,, M, (i))

r, = Z w! (i)M,

The module learns a mechanism that can selectively pay more attention to scarce training items whose effect
is always neglected during a huge amount of training iterations.

Hidden state

Cosine Distance

Read weight vector

Retrieved values from memory



Memory details: writing

Similar to One-shot Learning with Memory Augmented Neural Networks.

Usage weights to control writing to memory.

- h; = LSTM(x;,h;_{) Hidden state
- . Sigmoid or
e softmax
I LSTM | : (E\ : Wf’ = ’)/Wf_l -+ WI = W%‘U Usage weights
o
Wiite | | Read w =o(a)w;_; + (1 —o(a))L(wi; < m(w; ,,n)) write weights
| ; . i 2
BEE M; = M;_1(4) + wi” (i) by

Augmented memory



Tralining

Predicted answers

Sigmoid o T Given the output distribution, the network is optimized by minimizing
Séa lettuce 014 the Cross-Entropy loss over the input one-hot encoded label vector.
& 7 |broccoli  0.08 |
| | T
P+ basil 0.06 | ﬁ(@) = — E y; logp;

Pre-trained VGGNet-16 and ResNet-101 to extract CNN features

Visual image CNN feature



Results

Test-dev Test-standard
Multiple-choice Open-ended Multiple-choice Open-ended

Method YN Num Other All ¥Y/N Num Other All Y/N Num Other All Y/N Num Other All
iIBOWIMG [44] 76.7 37.1 544 617 766 350 426 557 769 373 546 620 768 350 426 559
DPPnet [27] 80,8 389 522 625 807 372 417 572 804 388 528 627 803 369 422 574
VQA team [2] 80,5 382 530 627 805 368 431 578 806 377 536 63.1 806 364 437 58.2
SAN [43] - - - 793 36.6 46.] 58.7 - - - - - 58.9
NMN [1] - 805 374 43.1 579 - - - - 58.0
ACK [39] - 810 384 452 592 - - 81.1 37.1 458 3594
SMem [41] - 809 373 43.1 580 - - 80.8 373 43.1 58.2
DMN+ [40] - - - - 80.5 368 483 603 - - - - - - - 60.4
MRN-ResNet [17] 824 397 572 656 824 384 493 615 824 396 584 663 824 382 494 618
Re-Ask-ResNet [23] - - - - 784 364 463 584 - - - 782 363 463 584
HieCoAtut-ResNet [21] 79.7 400 598 658 797 387 51.7 618 - - - 66.1 - - - 62.1
RAU-ResNet [26] 819 41.1 615 677 819 390 3530 633 817 400 610 673 817 382 528 63.2
MCB-ResNet [7] - - - 69.1 825 376 556 64.7 - - - - - -

MLP-ResNet [14] - - - - - - - - 80.8 176 620 652 - - - -

VQA-Mac-ResNet [37] 81.5 400 622 67.7 815 384 530 63.1 8l4 398 623 678 814 382 532 633
Ours-VGG 8l.1 410 625 678 812 378 507 618 812 393 617 674 81.2 364 517 623
Ours-ResNet 81.6 421 652 695 BlS5 390 540 638 8l.6 409 651 694 817 376 547 64.1

MSCOCO dataset: 200K real images with three questions each.

Each question has ten answers collected from human subjects.

Acc(a) = min

best
second best

#humans that labeled a

3



Trajectory Prediction




Trajectory Prediction

Multiple futures are possible



MANTRA: Memory Augmented Neural TRAjectory predictor

OBSERVED MULTIPLE PREDICTED

TRAJECTORY TRAJECTORIES
MEMORY NETWORK
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F. Marchetti et al., “Mantra: Memory augmented networks for multiple trajectory prediction”, CVPR 2020
F. Marchetti et al., “Multiple Trajectory Prediction of Moving Agents with Memory Augmented Networks”, TPAMI 2020



MANTRA: Overview
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Credits F. Marchetti et al.



MANTRA: Inference Time

MEMORY NETWORK At inference time, the reading
2 R controller exploits the observed past
PAST CONTEXT FUTURE .
and context embeddings to access

MEMORY MEMORY MEMORY
i ( TOP-K i . ..
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MANTRA: Decoding

Each future read from memory is MEMORY NETWORK
combined with the current past eshEmEEEREREERERERER=T.,

. . PAST CONTEXT FUTURE ¢
and context and is decoded into a MEMORY  MEMORY MEMORY
future prediction
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MANTRA: Multimodal prediction

Multimodal
Prediction

e - -
T Y foa

) Wy

¢I\’g




AutoEncoder for Feature Representation

* To learn effective feature representations, we train encoding and decoding functions as -

an autoencoder.
=
ENCODER

ENCODER
M Xk CONTEXT C N N
P o ENCODER

..IIIII.

GRU

74

.
& u
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| | ] 5
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Memory Inspection

20

40

Credits F. Marchetti et al.



AutoEncoder for Feature Representation

Influence of past

’ ? Past: 2s
Future: 4s

(a) (b) (©) (d) (e)

Fig. 11. Influence of past in the decoder. (a) observed past; (b) slower
past; (c) faster past; (d) past embedding zeroed; (e) multiple random-
ized past embeddings. Blue: past trajectory. Red: future reconstruction.
Green: original future.



AutoEncoder for Feature Representation

Fig. 12. Influence of context in the decoder. (a) original context; (b)
different context; (c) context embedding zeroed; (e) multiple randomized
context embeddings. Blue: past trajectory used for decoding. Red: future

reconstruction. Green: original future.



Training: writing controller
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Training: reading controller
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Training: reading controller

Error Sim

1.5

(.,' 0.5 < (| |, Label: 1)

7.5

3.5 Loss:
Binary Cross Entropy
0.8 I

1.5

&« 8.5 ‘ (| |, Label: 0)




Quantitative Results

ADE FDE

Method 1s 2s 3s 4s 1s 2s 3s 4s
Kalman 0.33 054 093 1.4 046 118 218 3.32
Linear 031 056 08 128 | 047 113 194 287
MLP 030 054 088 128 | 046 112 194 288

RNN Enc-Dec [78] 0.68 194 320 446 - - - -

Markov [52] 0.70 141 212 299

Conv-LSTM (top 5) [52] | 0.76 1.23 1.60 1.96 - - - -
INFER (top 1) [52] 0¥5 095 113 142 | 101 1276 176 267
INFER (top 5) [52] 056 0.75 093 122 | 081 108 155 246
MANTRA (top 1) 037 067 107 155 | 060 133 232 350
MANTRA (top 5) 0.33 048 066 090 | 045 078 122 203
MANTRA (top 10) 031 043 057 078 | 043 067 104 1.78
MANTRA (top 20) 029 041 055 074 | 041 0.64 1.00 1.68

KITTI

ADE FDE

Method Is 3s | 1Is 3s
Kalman (top 1) 0.72 2.70|1.29 6.56
Linear (top 1) 0.58 1.95]|0.98 4.58
MLP (top 1) 0.53 1.68|0.87 3.90
NN [1] (top 1) 0.75 2.46[1.28 5.60
NN + map [1] (top 6)  |0.72 2.28|1.33 4.80
LSTM ED [1] (top 1)  |0.68 2.27|1.78 5.19
LSTM ED + map [1] (top 6)[0.80 2.25|1.35 4.67
MFP [9] (top 6) - 1.39| - -
MANTRA (top 1) 0.72 2.36|1.25 5.31
MANTRA (top 6) 0.56 1.22]0.84 2.30
MANTRA (top 10) 0.53 1.00(0.77 1.69
MANTRA (top 20)  |0.52 0.84/0.73 1.16

ARGOVERSE



Qualitative Results
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DEMO: Carla simulator




Reading Controller

Top-k Similarity function to retrieve the top-K
Sﬁ:\’j;ﬁiy ] I | samples which are used to individually
Obs state % """""" E — ;eacil%staltes generate K different futures.
— | ] :_E . _
] P o Only one element is responsible
[ | > - i i
— = > ! for generating a future trajectory.
Keys Attention Values
@ Combination of features from different -
samples in memory for each prediction. [
-1 | [ -
Reading state Reading state Reading state
v —| | Better generalization capabilities. —] —
v=] | Robust to outliers or corrupted samples. Values Values Values

F. Marchetti et al., “Explainable Sparse Attention for Memory-based Trajectory Predictors”, ECCVw 2022



Explainable Sparse Attention Controller (ESA)

Explainable Sparse Controller

- e e e e e e e e e e e e e e

Projection
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Projection
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Obs state i

Scaled dot product
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Reading states

e mm mm m m mm mm mm m mm Em Em e e e e e

Multiple read heads extract different
information from memory using different
learnable projection function.

Query Q and Key matrix K are compared using
scaled dot product.

Attention is created by a sparse-max function.

Reading state is a weighted sum of memory
Values with attention scores.



Sparse-max Attention!¥!

@ Euclidean projection of the input vector onto the probability simplex.

Scaled dot product
QKT
M

»
»

Soft-max

Sparse-max

A

0

JROOR0H) [O80a0a0

The projected input hits the boundary of simplex making the output sparse.

Q,

1op| === softmax, ([t.0])
—  sparsemax, ([t,0)

Focus only on few relevant elements to the current observation.

Small subset of elements enables a better model explainability.

[4] Martins et Al. : From softmax to sparsemax: A sparse model of attention and multi-label classification, ICML2016



Experiments: Dataset & Metrics

Mantra on KITTI

Hours of navigation in rural
areas and hightways of mid-

size city, Karlsruhe.

Past: 2.0s — Future: 4.0s

In multi-modal setting, we take the best out of K predictions.

Present

Mantra-M on ARGOVERSE

Trajectories acquired in an

area of 1000km? in the cities

of Pittsburgh and Miami.
Past: 2.0s — Future: 3.0s

Future

Prediction

Memonet on SDD

Pedestrians and bicycles

acquired by a bird’s eye view

drone on university campus.
Past: 3.2s — Future: 4.8s

Instant T

L2

——  Final Displacement Error

------ Average Displacement Error



Quantitative Results

KITTI

ARGOVERSE

ADE FDE
Method Is 25 3s  4s | 1Is 25 3s  4s
Kalman [32] 0.51 1.14 1.99 3.03|0.97 2.54 4.71 7.41
Linear [32] 0.20 0.49 0.96 1.64]0.40 1.18 2.56 4.73
K1 MLP [32] 0.20 0.49 0.93 1.53/0.40 1.17 2.39 4.12
- DESIRE[25] _ - = o - |Q5L L44 276 445
IMANTRA [32] |0.24 0.57 1.08 1.78]0.44 1.34 2.79 4.83 o
DIANTRALESA 1024 030 0,91 1.48/041 1.132.30 2011 |, 17-18% FDE@4s
SynthTraj [3] 0.22 0.38 0.59 0.89]0.35 0.73 1.29 2.27
s DESIRE2S)_ _| - _ - _ - _ _-_[0.28 Q.67 1.22 2.06
7 JMANTRA [32] ]0.17 0.36 0.61 0.94{0.30 0.75 1.43 2.48 14.91% FDE@4s
MANTRA+ESA |0.21 0.35 0.55 0.83/0.31 0.66 1.20 2111 7
DESIRE [25)) A
K=20 IMANTRA [32] 10.16 0.27 0.40 0.59/0.25 0.49 0.83 1.49
MANTRA+ESA 10.17 0.27 0.38 0.56/0.24 0.47 0.76 1.43
ADE FDE
Method Is  3s | 1s 3s |Off-Road (%)|Memory Size
K1 MANTRA-M [33] |0.72 2.36{1.25 5.31 1.62% 75,424
- IMANTRA-M+ESA|0.58 1.76/0.96 3.95 1.84% 9,701
'I_(:G MANTRA-M [33] T0.56 1.22[0.84 230| 327% | 12,467 —
| IMANTRA-M+ESA|0.47 0.93/0.68 1,57 _2.32% _ | _ 2337 _
K—10 MANTRA-M [33] |0.53 1.00{0.77 1.69 4.17% 6,566
- |MANTRA-M+ESA|0.44 0.80(0.63 1.20|  2.98% 1,799
K—920 MANTRA-M [33] |0.52 0.84{0.73 1.16)1  7.93% I 2,921
- T IMANTRA-M+ESA|0.45 0.73]0.65 0.88] 3.14% _ | 1,085

Unit of measurement: meters

I
I l 81.25% Memory Size

l 60.40% Off-Road




Quantitative Results

Unit of measurement: pixels

K=20 K=5

Method ADE | FDE Method ADE | FDE Method ADE | FDE
Social-STGCNN [36] 20.60 33.10 |SimAug [27] 10.27 19.71 DESIRE [25]  19.25 34.05
Trajectron++ [45]  19.30 32.70 ]MANTRA [32] 896 17.76 Ridel et al. [41] 14.92 27.97
SoPhie [44] 16.27 29.38 |PCCSNet [51] .62 16.16 MANTRA [32] 13.51 27.34
NMMP [36] 14.67 26.72 |PECNet [31] 9.96 15.88 PECNet [31]  12.79 25.98

SDD | EvolveGraph [26]  13.90 22.90 |[LB-EBM [37] 8.87 15.61 PCCSNet [51] 12.54 -

EvolveGraph [26] 13.90 22.90 |[Expert-Goals [19] 7.69 14.38 TNT [56] 12.23 21.16
CF-VAE [4] 12.60 22.30 |SMEMO [34] 8.11 13.06 SMEMO [34]  11.64 21.12
Goal-GAN [9] 12.20  22.10 {MemoNet [54] 8.56 12.661 ;_MemoNet 4] 13.02 27.181
P2TIRL [11] 12.58  22.07 {MemoNet+ESA _8.02_1297" | MemoNet+ESA 12.21 23.03!



Qualitative Results
ARGOVERSE

MANTRA4ESA
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Argoverse example

Evident cause-effect relationship
between memory reading and
the generated output

Plot of semantic maps and
trajectories weighed by ESA
attention.

Explainability - .
T 1 -. 1

Attention vector over memory locations




Explainability

Argoverse example

Evident cause-effect relationship
between memory reading and
the generated output

Plot of semantic maps and
trajectories weighed by ESA
attention.

- 'y

Attention vector over memory locations



Explainability
Pred 1 Pred 2 Pred 3
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Sparsemax

Softmax

Smoother attention

Attentlon heatmap over memory

Sparse-max: Maps and tracks with positive attentions can be interpreted as a scenario consistent with prediction.

Soft-max: Soft attention vector, no element in memory is clearly identifiable as responsible of the prediction.




Garment Recommendation with Memory Augmented Neural Networks

L. De Divitiis, ICPR 2020
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L. De Divitiis et al. "Garment recommendation with memory augmented neural networks”, ICPRW 2021



Garment Recommendation with Memory Augmented Neural Networks

Ground Truth Retrieved bettems
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L. De Divitiis et al. "Garment recommendation with memory augmented neural networks”, ICPRW 2021




Garment Recommendation with Memory Augmented Neural Networks

L. De Divitiis et al., TOMM 2022

Disentangled features corresponding to color and shape are stored in two different memory banks.
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L. De Divitiis et al. ”"Disentangling features for fashion recommendation”, TOMM 2022



Garment Recommendation with Memory Augmented Neural Networks

L. De Divitiis et al., TOMM 2022

Disentangled features are learned with an autoencoder with two internal states plus a triplet loss.

Encoder + MLP
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Garment Recommendation with Memory Augmented Neural Networks

L. De Divitiis et al., TOMM 2022

Disentangled features are learned with an autoencoder with two internal states plus a triplet loss.

Encoder
+

MLP

Encoder
+

MLP

— rot Jjitter color shape
‘£ - Lrec + Lrec + Lrec + A('Ltrlplet + 'Ltriplet)

Reconstruction Triplet
losses losses

Encoder
+

MLP

Jirter Jitrer
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L color shape
riplet eriplff L

L. De Divitiis et al. ”"Disentangling features for fashion recommendation”, TOMM 2022



Garment Recommendation with Memory Augmented Neural Networks

L. De Divitiis et al., TOMM 2022

The following memory controller loss is used:  Lecontroller = d + (1 — Pw) + (1 — d’) - Pw

When the reconstruction error d* is not normally distributed and does not cover the entire [0, 1] range, the writing
controller can converge to trivial solutions such as «write everything» or «write nothing».

The loss is regularized by normalizing d* and by adding a penalty that enforces the following behaviour:
- samples with errors higher than the Nth-percentile of d*should be written in memory

- samples with errors lower than the Nth-percentile of d*should not be written in memory

thy — pw+m if py, <th, & d*> percy perex
.Epenalty = th,, = —
Pw— th,, + m If Pw > th,, & d*< percn max

d* d*
(1= py) + (1 -

*
L controller = ) Pwt o Lpenalry

* *
dmax dmax

L. De Divitiis et al. ”"Disentangling features for fashion recommendation”, TOMM 2022



PART3 - Transformers



Attention and memory

Talking of memory in computer systems we refer to their storage capacity. In this sense computers have much
better memory than people as they are able to store everything.

Memory in humans is different. Human memory has a limited capacity, and thus attention determines what will
be encoded. Human memory is rather the ability to select information and attend to that.

Memory is attention over time. Attention and memory are important features of human cognition. They cannot
operate without each other.

These intertwined concepts have been used differently in deep learning systems.



Attention in CNNs

FEAT

TOKEN | TOKEM | TOKEN TOKEN TOKEM TOKEN TOKEMN TOKEN

In a CNN, parallelization is trivial per layer. Convolutional filters extract local correlations within the filter window.
The maximum range of a dependency that can be learnt in a layer is the size of the convolutional filter.

Long range dependencies of length n will require O(log n) layers (distance between positions is logarithmic)



Attention in RNNs

Output

Recurrent : -
Working VS Long-term LSTM Working
Neural Network Memory Memory Memory

In RNNs and LSTMs sequential computation inhibits parallelization.
RNNs and LSTMs do not have a mechanism for modelling item-specific time dependencies.

The entire information is modified, and there is no consideration of what is important and what is not.



Attention in MANNS
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Neural Turing Machine

attention

memory

In MANNSs, the Controller executes sequentially.
Memory is an array of vectors individually addressable. Memory entries can be modified.

An attention vector specifies the magnitude of each memory state that should be extracted.



Transformers

Transformers are a type of Encoder-Decoder model. Transformers were developed to solve the problem of sequence
transduction, or neural machine translation.

For models to perform sequence transduction, it is necessary to have some sort of memory.

SEQUENCE TO SEQUENCE MODEL l




Transformers

Transformers make use of multi-headed self-attention to perform sequence to sequence tasks such as language
modelling and machine translation.

Self-attention is used to learn long-range dependencies between the elements in a sequence.
Multi-head self-attention is the combination of several attention heads. This is conceptually similar to how a

convolutional layer can consists of multiple convolution filters, with each filter independently extracting
different types of features.

Output Output Output Output Output
Embedding Embedding Embedding Embedding Embedding
Feed-forward Network

?

Input Input Input
Embedding Embedding Embedding

Multi-Head Self Attention

Input Input Input Input Input
Embedding Embedding Embedding Embedding Embedding




Attention in transformers

Output Output Output Output Output
Embedding Embedding Embedding Embedding Embedding
Feed-forward Network
Input Input Input
Embedding Embedding Embedding

Multi-Head Self Attention

Input Input Input Input Input
Embedding Embedding Embedding Embedding Embedding

TOKEN | TOKEN TOKEN | TOKEN TOKEN l TOKEN

The attention mechanism performs a lookup producing a set of weights for each element.
The most relevant elements have the highest attention scores.



Transformer encoder-decoder architecture
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Self-attention mechanism

Self-attention is a mechanism used to build representations based on the pair-wise correlations between the elements in
a sequence. Each layer has a complexity of O (n?) for sequences of lenght n. Outputs are weighted sums of the inputs.

From each of the encoder’s input vectors a Query vector, a Key vector, and a Value vector are created by multiplying the
embedding by three matrices learned during the training process.

Query
_ Key
Value
T T T Attention
Embedding Head [> Score
Dimension )
Feed Forward Query
Key
—~ Value
f f f ‘ /
Y
Sequence
Length
Input
Self-Attention Embedding LI T CTTT]
T T T Queries g1 qz wa
LT ] LTI T ] LT T[]
Keys D:I:I I:I:I:I

values [T1] [T



Self-attention mechanism

The attention scores are calculated between the query vector Q of each element and the key vector K of every other
element in the sequence. The computed attention scores are softmax-normalized and used as weights.

Multiplying each value vector by the softmax score and summing them up let us know how much another itemis
relevant to the current item.

Input
Embedding LT T T ] LT T T ]
Queries a [T o 11T
Keys [T [T
Values Djj Djj
Score qie = qi e =
T
Divide by 8 (/d;. )
X
softmax ( ) = Softmax
V.
Softmax
X [ T1]

sum (T[] (T[]




Multi-head self-attention

With multi-headed self-attention, the network learns different semantic meanings of attention (e.g., one for
vocabulary, one for grammar...)

Separate Q/K/V weight matrices are mantained for each head.

As in the single-head case, we multiply X by the Wy, Wy, W, matrices to produce Q, K, V.

1) This is our 2) We embed 3) Split into 8 heads. 4) Calculate attention  5) Concatenate the resulting ~ matrices,
input sentence* each word* We multiply X or using the resulting then multiply with weight matrix to
with weight matrices Q/K/V matrices produce the output of the layer
X Wo®
Thinking QO
Machines ?ﬂt‘:'ﬂ
W, Q
* |n all encoders other than #0, _ 01
we don’t need embedding. e
We start directly with the output j’

of the encoder right below this one




Normalization and skip connections

Each block in the encoder has an Add&Normalize operation after the self attention.

Here the input X is added with the attended feature Z and the result is normalized with Layer Normalization.

The skip connection that sums X and Z has the benefit of easing training.

$ 4
‘,( Add & Normalize )
. ( Feed Forward ) ( Feed Forward )
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Decoding

Decoding is performed one step at a time.
The decoder receives as input both the output of the encoder and the generated output sequence.

Decoding time step: 1@3 4 56 OUTPUT
?
( ~
ITC OO0 10 orctoc Voncaee ([ Linear +Softmax )
ENCODERS DECODERS ]
\ /),
EMBEDDING t t t 4
WITH TIME LITT] LITT] LITT] (TT11]
SIGNAL
EMBEDDINGS LT 1] LLTT] LITT] (L1111
INPUT Je suis  étudiant PREVIOUS

OUTPUTS



Decoder

The structure of the decoder is similar to the one of the encoder.

Two attentions are present in each decoder block:

- At first a self-attention between the generated output tokens is performed

- Then an encoder-decoder attention is performed between the embedded input tokens and the embedded output
tokens

This makes the model explainable with reference to both input and output tokens.
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Transformer Applications

Transformers have been developed to address Natural Language
Processing tasks and ovecome the limitations of RNNs.

Local Relation
Networks
Huctal 2019 Stand-Alone

Attention
Ramachandran et al. 2019

Attention-Augmented
Convolution
Bolla et al. 2019

In principle, Transformers can tackle any problem based on
sequences/sets.

Cross
Transformer
Doersch etal

Global-Contex,
Networks

20
DETR

Carion et al
L

Global
Attenion

Rapid application explosion in the past few years covering NLP but also
Computer Vision and Machine Learning in general.

Vectorized
Attention
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BERT - Bidirectional Encoder Representations from Transformers

Devlin et al., 2018

Language models usually use only a left or right context, treating the problem in an unidirectional way.

BERT achieved a breakthough in NLP by performing a pretraining that exploits bidirectional contexts. The
resulting model can be then finetuned for a variety of NLP tasks.

Bidirectional context
Words can “see themselves”

Unidirectional context
Build representation incrementally

open a bank open a bank
T T T f T T
Layer2 (| Layer2 [—| Layer2 Layer 2 : Layer 2 Layer 2
T T ! f T i
Layer2 [—| Layer2 —| Layer2 Layer2 || Layer2 Layer 2
T T T T T I
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BERT - Bidirectional Encoder Representations from Transformers

Devlin et al., 2018

The idea is to mask a percentage of the words in a sentence and then predict the masked words.

BERT uses a masking of 15%.
Too little masking makes the model too expensive to train.
Too much masking does not provide sufficient context.

Training strategy: randomly replace the [MASK] token with a random word or with the original word 10% of the time.
Makes word distribution more similar between training and testing time.

store gallon

T T

the man went to the [MASK] to buy a [MASK] of milk



BERT - Bidirectional Encoder Representations from Transformers

Devlin et al., 2018

BERT uses a Transformer encoder.

Multi-Head Attention
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Positional embeddings

In order to add position information (order of the sequence)

PE(IJOSI,QI') — Sin-(p()S/100002i/dnmde])
PE(pos.2i+1) — COS(130.9/100002i/dtmje1)

Each dimension of the positional encoding corresponds to a sinusoid.

For any fixed offset k, PE,,s+k Can be represented as a linear transformation of PE),,s. This
would allow the model to easily learn to attend by relative positions.



BERT - Bidirectional Encoder Representations from Transformers

Devlin et al., 2018

BERT acts as an effective pretraining for several NLP tasks.

The model can be simply finetuned on specific tasks by changing the classification head.
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Fine-tuning with BERT

* Context vector C: Take the final
hidden state corresponding to

the first token in the input:
[CLS].

* Transform to a probability

distribution of the class labels:

P = softmax(CW7)

* Batch size: 16, 32

* Learning rate (Adam): 5¢-5, 3e-5, 2e-5

* Number of epochs: 3, 4

Figure in (Devlin et a/.,, 2018)
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Transformers vs LSTM

In Transformers, self attention is not influenced by distance between tokens (no long-term forgetting).

Transformers are more efficient since matrix multiplication is performed between weights and whole sentences
instead of tokens. Made possible by high parallelization in modern GPUs.

Transformer LSTM

X00 | X01 | X02 | X03 X00|| XxX01 [[x0o2| xo03

X10 | X11 | Xx12 | x13 X10|| x11 || x12 | x13




Transformers beyond NLP

Transformers have been exploited also to process different kinds of data than text.
Suitable for any input/output that can be represented as a set of tokens.
Since the inputs are processed in parallel, there is no need for sequential data.

What about images? Images can been seen as a set of pixels/patches.

Image patches in computer vision can be encoded separately into a set of tokens just as words in NLP.



Vision Transformer (ViT)

A. Dosovitskiy et al. 2020

The image is split into fixed-size patches, linearly embedded and concatenated with position embeddings.

The sequence of “tokens” is fed to a standard Transformer encoder.
An MLP head is used for classifying images.

Results are explainable thanks to attention.
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DETR — Object Detection with Transformers

N. Carion et al, 2020

DETR addresses the problem of object detection as bipartite matching problem, uniquely assigning predictions with
ground truth boxes.

CNN feature maps are considered as a set of vectors describing each pixel and are fed to a transformer. The output
is a set of detections.

transformer
encoder-
decoder

set of image features set of box predictions bipartite matching loss



DETR — Object Detection with Transformers

N. Carion et al, 2020

DETR uses a conventional CNN backbone to learn a 2D representation of an input image.
The model flattens it and supplements it with a positional encoding before passing it into a transformer encoder.

A transformer decoder then takes as input a small fixed number of learned positional embeddings, called queries, and
additionally attends to the encoder output.

Each output embedding of the decoder is passed to a shared feed forward network (FFN) predicting either a detection
(class and bounding box) or a “no object” class.
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DETR — Object Detection with Transformers

N. Carion et al, 2020

Interpretability with reference to input pixels thanks to self-attention.

self-attention{430, 600) self-attention(450, 830)

self-attention(520, 450) . g T - self-attention({440, 1200)

-'-u- AN

?f e b 1 -.ﬂi'i-.ﬁ.




DETR — Object Detection with Transformers

N. Carion et al, 2020

Interpretability wrt output boxes thanks to input-query attention.




Limitations of transformers

* Parallelization makes transformers computationally efficient, however it restricts a full exploitation of the
sequential nature of the input.

 Temporal information must be manually added to the input using positional encodings.

» Hidden representations only accesses the past representations of lower layers, even though higher-level
representations of the past have already been computed as an autoregressive model.

* Atinference time, Transformers generate one token at a time, so they could access these representations for
better performance. Such information is not exploited at training time due to parallelization.

* Lack of recursive computation: the number of possible transformations on the input is bounded by the model
depth.



Sequential tasks with longer sequences
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Language Modeling

Given a corpus of T tokens & = [z, @, ..., Z4 ..., 27}, model

= 1_ P(z¢ | fo(x<t))

B f exp (fg(X;;;_)Tf-f_.l.!)
e Zare,-l’ exp (fo(x<t) " ez)



Standard Transformers

Step 1: use causal attention masks Step 2: break the corpus into segments of equal lengths
X= (@1, 22, .., L) (B )L 1y T(r—1) L4251 T2T) 0
i segment | sogu:(:nl. T
— (3-11,17'1.].2!"'!‘]-‘I,L)?”' '!("]“T.I.!‘I:T.QE'"."ET.L)!l'l
i M "

Step 3: Model each segment independently (limited memory)

P(x) = H P(s; | s<s) = H P(s;) (independence assumption)
@ O O O r T

X1 Xa X3 Xg

L L
= HH Pz, ; | Xrci) = H H P(x;; | f[x-'.{f:l)
T =1

T I=1
* Remove any backward connection



Standard Transformers
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Standard Transformers
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Standard Transformers: evaluation

P(xs | x34)




Standard Transformers: evaluation

PINE

X 5'



Standard Transformers: evaluation

PL\'T ! ?C;_:r.g:l




Standard Transformers: evaluation

P(x; | x3¢)
O O D /?
Issues:
I. Longest context limited by segment
length.

2. Very expensive due to recomputation.

A77.

X3 Xy X5 Xy



Transformer XL

Key Ideas

(1) Segment-Level Recurrence
* Cache and reuse hidden states from last batch

* Analogous to Truncated BPTT for RNN: pass the last hidden
state to the next segment as the initial hidden

(2) Keep temporal information coherent

<

Transformer-XL = Transformer Extra Long



Transformer XL training
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Transformer XL training

P(xg|xce) Pix:|xe)  Plxg|xes) Plxg| %)
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Transformer XL training

P(xio| Xps) P(%; | Xes0) PlX12| Xom) Plxi3]%p12)
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N
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Transformer XL: much longer context

P(xio| xps)  P(xu|%es0) Plxpa|Xom) Plxys|xp12)

O O
@ e
@ @
O O
xs X s X o i - -

* Extra-Long context span: num layers X segment len



Transformer XL: evaluation
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A caveat: temporal incoherence
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A caveat: temporal incoherence
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Solution: relative positional embedding
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Solution: relative positional embedding
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Solution: relative positional embedding
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Solution: relative positional embedding

Pixg|x.6) Plxz|xa) Plxg|xas) Plxg] xp)
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Encode distances on edges!



Solution: relative positional embedding

P(xg | x¢) Plxr|x) Pixs) xes) Plxp| xep)
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Transformer-XL recap
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Transformer-XL recap

Pros:

- As aresult, Transformer-XL learns dependency that is 80% longer than RNNs and 450% longer
than vanilla Transformers

Cons:

- It’s a completely different architecture!

- You need to store previous representation from each layer, and add them in the self attention
at every layer!



Recurrent Memory Transformer

[ Transformer Layers ]
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Recurrent Memory Transformer

Where to put memory + Why recurrency

Memory tokens are added to the beginning of the input sequence, BUT

in decoder-only architectures the causal attention mask makes impossible for memory
tokens at the start of the sequence to collect information from the subsequent tokens.

Memory tokens are placed at the end of the sequence, BUT

preceding tokens unable to access their representations. To solve this problem we add
a recurrence to the sequence processing.



Recurrent Memory Transformer

[ Transformer Layers ] { Transformer Layers 1
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Recurrent Memory Transformer

Augmented Transformer with token based memory storage

Outperform Transformer-XL on memory-intensive tasks (copy, reverse,
associate retrieval)



Differences with Transformer-XL
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Memory Intensive Tasks

A baseline is used exploiting a Transformer-XL without memory

() Baseline £\~ Transformer-XL =f&— Memory Transformer -l RMT BPTT-0

. Copy - . Reverse . Associative retrieval
1.0 O H w0 . .\_. 1.0
g A
T 0.6 0.6 0.6
3 O ®
< 0.4 - 0.4 0.41
0.2 A 0.2 0.2}
% & % % ——®
| 3 6 9 1 2 4 6 1 2 3 4 5
Number of segments Number of segments Number of segments
(a) (b) (c)
reproduce input reverse the input N key-value pairs. One key is randomly selected, and
the task is to produce an appropriate value for the
seguence seguence P PRTOP

selected key.



Scaling Transformer to 1M tokens and beyond with
RMT
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Figure 1: Recurrent Memory Transformer retains information across up to 2 x 10° tokens. By augmenting
a pre-trained BERT model with recurrent memory (Bulatov et al., 2022), we enabled it to store task-specific
information across 7 segments of 512 tokens each. During inference, the model effectively utilized memory for up
to 4,096 segments with a total length of 2,048,000 tokens—significantly exceeding the largest input size reported
for transformer models (64K tokens for CoLT5 (Ainslie et al., 2023), and 32K tokens for GPT-4 (OpenAl,
2023)). This augmentation maintains the base model’s memory size at 3.6 GB in our experiments.
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