
Federico Becattini
federico.becattini@unisi.it

Deep Learning with
Memory

mailto:federico.becattini@unisi.it

Course outline

• Introduction to Neural Networks
• Deep Learning with Memory

• Internal Memory models
• External Memory models

• Transformers

Memory

«Memory is the power or process of reproducing or recalling what has
been learned and retained especially through associative mechanisms»
Merriam-Webster dictionary

There are three major processes involved in memory:
Encoding, Storage and Retrieval

Human Memory

Credits D. Kumaran et al.

Neocortex

Hippocampus
Short-term memory

Working memory

Neocortex
Long-term memory

Human memory happens in many parts of the brain at once and some types of memories stick around longer than others:

- Sensory Memory (<1-4 secs): stores a snapshot of sensory experience in categorical stores outside of cognitive control.

- Short-term Memory (20-30 secs): deals with fresh information about which we have awareness. Has temporal decay and
chunk capacity limits.

- Working Memory (20-30 secs): a short-term memory applied to cognitive tasks. Retains information in order to manipulate
it using attention.

- Long-term Memory (extended period): information is largely outside of awareness but can be called into the working
memory to be used when needed.

Pre-frontal cortex
Sensory memory

N. Cowan
Progress in Brain Research, 2009

Memory in AI

Two big challenges in AI:

- Define models that can capture long term dependencies in data sequences
- Define models that can make multiple computational steps to complete a task

In both cases this requires that networks have memory

PART1 – Learning order dependency in sequence prediction problems

RNN; LSTM; GRU
Memory Network models

Recurrent Neural Networks: RNN

They have the capacity to memorize in a
compact representation the result of
previous operations and use it in the
current step.
The hidden state acts as the memory.

RNNs are a class of neural networks designed to
interpret temporal or sequential information.

RNNs are called recurrent because they perform
the same operation for every element of a
sequence.

RNN

Sequence input

Output

Hidden State
The output of the hidden node is put back into the hidden node along
with the input at next time step

At every time step the internal state is updated and predictions can be
made based on long term patterns

Unrolled RNNs

RNN can be unrolled into feed-forward models: at each time step the output becomes the next input.
Like a deep neural network with indefinitely many layers.

The latent state of an RNN should give weights to samples in a time series, remembering important events.

RNN

Sequence input

Output

Hidden State

RNN RNN

What time

RNN RNN

is it

=

asking for the time

O1 O2 O3 O4

Basic equations of RNN

RNN’s parameters are three weight matrices:
W is applied to the previous hidden state
U is applied to the current input
V is applied between the hidden state and

the output

Credits D. Britz

RNN equations

s

Credits M. Nguyen

An hyperbolic tangent function ensures that the values stay between -1 and 1 thus regulating the output
of the neural network.

It also adds a non-linearity to the model.

Tanh activation

Recurrent Neural Network: RNN

RNNs share the learnable weights
across different time steps.

RNNs can process variable
length sequences of inputs.

Data: Time series, text, audio, videos Speech recognition

Sentiment analysis

Language modeling

Hidden State (t-1)

Input (t)

Stock predictions

Learnable Weights

Tanh Function

Output (t)

Hidden State (t)

(t) Timestep
+

N-dimensional state

The full sequence is a single training example.
Each instance in the unfolded network shares the same parameters.

The error can be accumulated for all the time steps and the weights are updated depending on the
whole sequence of hidden states.

If the model generates an output after every time step, errors are summed across time steps.
Thus, weight updates in all time steps are summed together.

RNN training

Credits D. Britz

RNNs consist entirely of differentiable operations. They can be trained using an extension of the
backpropagation algorithm: Backpropagation Through Time

Each time step in a RNN is like a fully connected layer.
Weight updates are calculated by applying the chain rule gradients across the unfolded network.

EXAMPLE: at step 3, calculate the error wrt parameters V, W, U.

similar
process

𝜕𝑠3

𝜕𝑠0
=

𝜕𝑠1
𝜕𝑠0

𝜕𝑠3
𝜕𝑠2

𝜕𝑠2
𝜕𝑠1

Backpropagation through time

With multiple matrix multiplications gradient values might either grow or shrink exponentially.

Accumulation of large derivatives results in the model being very unstable and incapable of effective learning.

If derivatives are small, gradient contributions to learning from far away steps might become zero. Long-range
dependencies are not learned.

In practice, the range of learned contextual information is limited to approximately 10 time steps.
Inherently unstable over long timescales.

1 2 3 4 5 6 7

Output

Hidden layer

Input

Exploding /vanishing gradient

To avoid exploding gradients, gradient clipping at each timestamp can be used:
check if gradient > threshold and normalize it

To tackle the vanishing gradient problem:
- use ReLU instead of tanh or sigmoid activation function
- initialize the W matrix with an identity matrix
- use gated cells such as LSTM or GRUs

Exploding /vanishing gradient

Long Short-Term Memory (LSTM) to solve the problem of exploding/vanishing gradients.

LSTM memory cell: what an LSTM stores in its memory cell is regulated by layers with activations called
gates that decide which information to forget or to remember.

Credits of C. Olah

forget gate output gate

input gate

RNN LSTM

input

Hidden
state

Cell
state

Hidden
state

input

Long Short Term Memory (LSTM)

Input (t)

Forget
gate

Input
gate

Output
gate

+x

Hidden State (t-1)

Cell State (t-1) Cell State (t)

Hidden State (t)

The cell state memorizes relevant information
throughout the processing of the sequence
and the gates learn which information to
forget or to remember.

The gates are neural networks that contain
learnable weights and activation functions.
They generate values between 0 and 1.

Gates

Long Short Term Memory (LSTM)

Decides which information should be thrown away from the memory cell and whether to retain the memory or
discard it depending on the current input.

Sigmoid outputs close to 0 mean that information is going to be forgotten. Sigmoid outputs close to 1 mean that
information is going to be kept.

Credits C. Olah

Credits M. Nguyen

LSTM gates – Forget Gate

Decides how much of the new information will be let through the memory cell and which values of the
memory to update with the new observations.

Sigmoid output 0 means not important, 1 means important.

tanh function compresses the values between -1 and 1 to regularize the network.

 provides change contents
Credits C. Olah

Credits M. Nguyen

LSTM gates – Input Gate

Updates the state based on the previous state, subject to forget and input changes.

Credits C. Olah

Credits M. Nguyen

LSTM gates – State Update

Decides how much information will be passed the next time step and what is going to be produced
as output based on the current memory.

The hidden state contains information on previous inputs.

Credits C. Olah

Credits M. Nguyen

LSTM gates – Output Gate

Credits R. Karim

LSTM

Gated Recurrent Unit (GRU) is a simplified version of LSTM which combines the Forget and Input gates
into a single Update gate. Typically used instead of standard LSTM.

Cell state and hidden state are also merged making the model easier to train.

GRUs have less weights and therefore are lighter and faster. No groundbreaking performance difference.

Credits C. Olah

LSTM GRU

Gated Recurrent Units

BIDIRECTIONAL RNN
Bidirectional LSTMs train two models instead of one. Instead of observing only the past, the future is
also taken into account.

Two processing branches: the data flows from the beginning to the end and vice versa.
The two hidden states are combined.

This provides additional context to the network and results in faster and more effective learning.
The whole sequence must be available. Not suitable for online learning.

Credits C. Olah

Bidirectional LSTM

Traditional LSTMs have vectors as inputs. Convolutional LSTM (ConvLSTM) is an extension of LSTM to
tensorial data, e.g. images or convolutional feature maps.

Inputs, hidden states and gates of the ConvLSTM are 3D tensors.
Inputs and states are imagined as vectors standing on a spatial grid.

Multiplications with weights are replaced by the convolution operator (*)

Convolutional LSTM

Stacked LSTM is an extension of the LSTM model that has multiple hidden LSTM layers where each layer contains a
different memory cells.

The first LSTM, rather than generating a single output, provides a sequence of outputs that are fed to the second
LSTM and so on.
Given that LSTMs operate on sequential data, the addition of layers adds levels of abstraction of input observations
over time.

More powerful RNN

● To further improve the power of RNN networks, one can stack a few layers of

RNN/LSTM.

Layer-2

Layer-1

Stacked LSTM

A situation in which it is advantageous to stack LSTMs is when we want to learn hierarchical representations of time-
sequence data e.g. a video sequence.

In stacked LSTMs, each LSTM layer outputs a sequence of vectors which will be used as an input to a subsequent
LSTM layer. This hierarchy of hidden layers enables more complex representation of the sequence data, capturing
information at different timescales.

Layer1 Layer2

Credits J. Donahue et al.

Stacked LSTM

When training LSTM/GRU data must be organized in sequences

Input has different dimensionality with reference to traditional models such as CNNs:
convolutional layer : (Batch_Size) x (Height) x (Width) x (Num_Channels)
recurrent layer : (Batch_Size) x (Num_Time_Steps) x (Feature_Dimension)

Instead of tensorial data LSTM/GRUs usually work with feature vectors that are organized
sequentially in time steps

The example is not fed to the layer all at once but one timestep at a time.

LSTM/GRU training

- If an output is provided for each timestep then error and gradients can be obtained for each step and
backpropagated through the previous ones.

- If the output is generated only at the end of the sequence there will only be a single error to backpropagate
through all timesteps.

The weights that are updated are the same since the same LSTM/GRU is used for each timestep. What changes
is the amount of gradients that are computed.

The cells learn when to allow data to enter, leave or be deleted through the iterative process of making guesses,
backpropagating error and adjusting weights via gradient descent.

LSTM trainingLSTM/GRU training

LSTMs can be trained autoregressively, i.e. the output at time t-1 can be fed as input at time t. This is the case of
LSTM for prediction and generation task.

Weights at early training stages might produce incorrect outputs. The LSTM will observe incorrect inputs and might
diverge.

As a solution the ground truth at time t-1 can be fed as input at time t (teacher forcing).

Teacher Forcing

When using teacher forcing train and test data might not be distributed in the same way since the network will not
generate perfect outputs.
At test time small errors might accumulate and lead to inputs that the network has never seen before.

A possible solution is to alternate between teacher forcing and standard training sampling i.e. using either the
output of the LSTM or the ground truth as input for the next timestep.

Teacher Forcing

LSTM/GRU training issues to consider :

Sequence length: sequences of variable lengths need to be padded to a fixed length to enable batch processing.
Data preprocessing can often be painful.

Attention window: in principle, LSTM/GRUs are able of processing longer sequences than vanilla RNNs. But for
long sequences one may want to fix a window of attention, making the current sample depend only on a
limited number of past observations.

Interpretation vs temporal patterns: evidence exists about difficulties of LSTM/GRUs to learn both the
interpretation of the input and temporal patterns at the same time. It is better to feed LSTM/GRUs with
meaningful features, e.g. pretrained convolutional features.

Overfitting: if the LSTM/GRU memorizes all the training data it is likely to overfit. Data augmentation and
regularization are important.

LSTM in practice

The core reason that recurrent nets are more exciting is that they allow us to operate over

sequences of vectors: Sequences in the input, the output, or in the most general case

both. A few examples may make this more concrete:

Each rectangle is a vector and arrows represent functions (e.g. matrix multiply). Input vectors are in

red, output vectors are in blue and green vectors hold the RNN's state (more on this soon). From left

to right: (1) Vanilla mode of processing without RNN, from fixed-sized input to fixed-sized output (e.g.

image classification). (2) Sequence output (e.g. image captioning takes an image and outputs a

sentence of words). (3) Sequence input (e.g. sentiment analysis where a given sentence is classified

as expressing positive or negative sentiment). (4) Sequence input and sequence output (e.g.

Machine Translation: an RNN reads a sentence in English and then outputs a sentence in French). (5)

Synced sequence input and output (e.g. video classification where we wish to label each frame of the

video). Notice that in every case are no pre-specified constraints on the lengths sequences because

the recurrent transformation (green) is fixed and can be applied as many times as we like.

As you might expect, the sequence regime of operation is much more powerful

compared to fixed networks that are doomed from the get-go by a fixed number of

computational steps, and hence also much more appealing for those of us who aspire to

build more intelligent systems. Moreover, as we’ll see in a bit, RNNs combine the input

vector with their state vector with a fixed (but learned) function to produce a new state

vector. This can in programming terms be interpreted as running a fixed program with

certain inputs and some internal variables. Viewed this way, RNNs essentially describe

programs. In fact, it is known that RNNs are Turing-Complete in the sense that they can

to simulate arbitrary programs (with proper weights). But similar to universal

approximation theorems for neural nets you shouldn’t read too much into this. In fact,

forget I said anything.

Sequential processing in absence of sequences. You might be thinking that having

sequences as inputs or outputs could be relatively rare, but an important point to realize

If training vanilla neural nets is optimization over functions, training recurrent nets is

optimization over programs.

(1) Processing without RNN, from fixed-sized input to fixed-sized output (e.g. image classification)
(2) Sequence output (image captioning takes an image and outputs a sentence of words)
(3) Sequence input (sentiment analysis where a given sentence is classified as expressing positive or negative sentiment)
(4) Sequence input and sequence output (machine translation: reads a sentence in French and then outputs a sentence in English)
(5) Synced sequence input and output (video classification where we wish to label each frame of the video)

Rectangle are vectors
Arrows represent functions
(e.g. matrix multiply).

Input vectors are in red
Output vectors are in blue
Green vectors hold the state

LSTM/GRUs allow to operate over sequences of vectors: sequences in the input, sequences in the output, or
in the most general case both.

(1) (2) (3) (4) (5)

Credits A. Karpathy

Memory Networks applications

Text
Language Modeling
Speech Recognition
Machine Translation
Question Answering
……

Video
Visual Tracking
Video Analysis
Human Behavior Understanding
....

Multimodal
Image Captioning
Video Captioning
Visual Question Answering
…..

Other
Interaction
Robotics
Audio Analysis
Automotive
…..

Main applications examples

Memory Networks applications

The LSTM is fed with features representing a textual question sentence.
The CNN fully connected layer provides content information about the image.

The LSTM output is combined with the image content representation and produces the required answer

CNN

Credits A. Agrawal et al.

VQA on the global image content

VQA: Visual Question Answering A. Agrawal et al, ICCV 2015

Multimodal Recurrent Neural Network generative model.

The RNN takes a word, the context from previous time steps and defines a distribution
over the next word in the sentence.

The RNN is conditioned on the image information at the first time step.
START and END are special tokens.

The core reason that recurrent nets are more exciting is that they allow us to operate over

sequences of vectors: Sequences in the input, the output, or in the most general case

both. A few examples may make this more concrete:

Each rectangle is a vector and arrows represent functions (e.g. matrix multiply). Input vectors are in

red, output vectors are in blue and green vectors hold the RNN's state (more on this soon). From left

to right: (1) Vanilla mode of processing without RNN, from fixed-sized input to fixed-sized output (e.g.

image classification). (2) Sequence output (e.g. image captioning takes an image and outputs a

sentence of words). (3) Sequence input (e.g. sentiment analysis where a given sentence is classified

as expressing positive or negative sentiment). (4) Sequence input and sequence output (e.g.

Machine Translation: an RNN reads a sentence in English and then outputs a sentence in French). (5)

Synced sequence input and output (e.g. video classification where we wish to label each frame of the

video). Notice that in every case are no pre-specified constraints on the lengths sequences because

the recurrent transformation (green) is fixed and can be applied as many times as we like.

As you might expect, the sequence regime of operation is much more powerful

compared to fixed networks that are doomed from the get-go by a fixed number of

computational steps, and hence also much more appealing for those of us who aspire to

build more intelligent systems. Moreover, as we’ll see in a bit, RNNs combine the input

vector with their state vector with a fixed (but learned) function to produce a new state

vector. This can in programming terms be interpreted as running a fixed program with

certain inputs and some internal variables. Viewed this way, RNNs essentially describe

programs. In fact, it is known that RNNs are Turing-Complete in the sense that they can

to simulate arbitrary programs (with proper weights). But similar to universal

approximation theorems for neural nets you shouldn’t read too much into this. In fact,

forget I said anything.

Sequential processing in absence of sequences. You might be thinking that having

sequences as inputs or outputs could be relatively rare, but an important point to realize

If training vanilla neural nets is optimization over functions, training recurrent nets is

optimization over programs.

Credits A. Karpathy, L. Fei Fei

Deep Visual-Semantic Alignments for Generating Image Descriptions
A. Karpathy, L. Fei-Fei, CVPR2015

Encoder-Decoder structure.
The model reads an input sentence “ABC” and produces “WXYZ” as the output
sentence. It stops after generating the end-of-sentence token.

Input and output lengths are decoupled.

Output generation is performed autoregressively.

Credits I. Sutskever et al.

Sequence to Sequence Learning with Neural Networks
I. Sutskever et al. Neurips 2014

Muhammad Ali boxing

In 1977 Muhammad Ali was able to estimate the
progress of his opponent Michael Dokes so well
that he could dodge 21 punches in 10 seconds…

Young Frankstein movie

The monster is not able to correctly estimate
the progress of the blind priest’s actions and
coordinate his movements accordingly…

Am I Done? Predicting Action Progress in Videos
F. Becattini et al. ACM TOMM 2020

The core reason that recurrent nets are more exciting is that they allow us to operate over

sequences of vectors: Sequences in the input, the output, or in the most general case

both. A few examples may make this more concrete:

Each rectangle is a vector and arrows represent functions (e.g. matrix multiply). Input vectors are in

red, output vectors are in blue and green vectors hold the RNN's state (more on this soon). From left

to right: (1) Vanilla mode of processing without RNN, from fixed-sized input to fixed-sized output (e.g.

image classification). (2) Sequence output (e.g. image captioning takes an image and outputs a

sentence of words). (3) Sequence input (e.g. sentiment analysis where a given sentence is classified

as expressing positive or negative sentiment). (4) Sequence input and sequence output (e.g.

Machine Translation: an RNN reads a sentence in English and then outputs a sentence in French). (5)

Synced sequence input and output (e.g. video classification where we wish to label each frame of the

video). Notice that in every case are no pre-specified constraints on the lengths sequences because

the recurrent transformation (green) is fixed and can be applied as many times as we like.

As you might expect, the sequence regime of operation is much more powerful

compared to fixed networks that are doomed from the get-go by a fixed number of

computational steps, and hence also much more appealing for those of us who aspire to

build more intelligent systems. Moreover, as we’ll see in a bit, RNNs combine the input

vector with their state vector with a fixed (but learned) function to produce a new state

vector. This can in programming terms be interpreted as running a fixed program with

certain inputs and some internal variables. Viewed this way, RNNs essentially describe

programs. In fact, it is known that RNNs are Turing-Complete in the sense that they can

to simulate arbitrary programs (with proper weights). But similar to universal

approximation theorems for neural nets you shouldn’t read too much into this. In fact,

forget I said anything.

Sequential processing in absence of sequences. You might be thinking that having

sequences as inputs or outputs could be relatively rare, but an important point to realize

If training vanilla neural nets is optimization over functions, training recurrent nets is

optimization over programs.

ProgressNet predicts the progress of the ongoing action at each time step.

Predictions are made framewise, observing the whole past history.

Faster R-CNN applied framewise + box linking to predict action tubes.
Two stacked LSTM layers with 64 and 32 hidden units are fed with features representing the
action region and global scene.

Credits F. Becattini et al.

The core reason that recurrent nets are more exciting is that they allow us to operate over

sequences of vectors: Sequences in the input, the output, or in the most general case

both. A few examples may make this more concrete:

Each rectangle is a vector and arrows represent functions (e.g. matrix multiply). Input vectors are in

red, output vectors are in blue and green vectors hold the RNN's state (more on this soon). From left

to right: (1) Vanilla mode of processing without RNN, from fixed-sized input to fixed-sized output (e.g.

image classification). (2) Sequence output (e.g. image captioning takes an image and outputs a

sentence of words). (3) Sequence input (e.g. sentiment analysis where a given sentence is classified

as expressing positive or negative sentiment). (4) Sequence input and sequence output (e.g.

Machine Translation: an RNN reads a sentence in English and then outputs a sentence in French). (5)

Synced sequence input and output (e.g. video classification where we wish to label each frame of the

video). Notice that in every case are no pre-specified constraints on the lengths sequences because

the recurrent transformation (green) is fixed and can be applied as many times as we like.

As you might expect, the sequence regime of operation is much more powerful

compared to fixed networks that are doomed from the get-go by a fixed number of

computational steps, and hence also much more appealing for those of us who aspire to

build more intelligent systems. Moreover, as we’ll see in a bit, RNNs combine the input

vector with their state vector with a fixed (but learned) function to produce a new state

vector. This can in programming terms be interpreted as running a fixed program with

certain inputs and some internal variables. Viewed this way, RNNs essentially describe

programs. In fact, it is known that RNNs are Turing-Complete in the sense that they can

to simulate arbitrary programs (with proper weights). But similar to universal

approximation theorems for neural nets you shouldn’t read too much into this. In fact,

forget I said anything.

Sequential processing in absence of sequences. You might be thinking that having

sequences as inputs or outputs could be relatively rare, but an important point to realize

If training vanilla neural nets is optimization over functions, training recurrent nets is

optimization over programs.

Am I Done? Predicting Action Progress in Videos
F. Becattini et al. ACM TOMM 2020

Action progress

Credits F. Becattini et al.

Am I Done? Predicting Action Progress in Videos
F. Becattini et al. ACM TOMM 2020

Is a Cell State enough?

Knowledge is compressed into a single dense vector.

M-dimensional

1

The memory is addressable as a whole.

It lacks the ability to address individual elements.

State to state transition is global: updating at each time step.

It lacks the ability to add new concepts from data streams
without forgetting the previous learned ones

Is Cell State enough?

Knowledge is compressed into a single dense vector.

The memory is addressable as a whole.

It lacks the ability to address individual elements.

State to state transition is global: updating at each time step.

Address
It lacks the ability to add new concepts from data streams
without forgetting the previous learned ones

Is Cell State enough?

Knowledge is compressed into a single dense vector.

The memory is addressable as a whole.

It lacks the ability to address individual elements.

State to state transition is global: updating at each time step.

Address

It lacks the ability to add new concepts from data streams
without forgetting the previous learned ones

Is Cell State enough?

Knowledge is compressed into a single dense vector.

The memory is addressable as a whole.

It lacks the ability to address individual elements.

State to state transition is global: updating at each time step.

t t+1 t+2 t+3

It lacks the ability to add new concepts from data streams
without forgetting the previous learned ones

Is Cell State enough?

Knowledge is compressed into a single dense vector.

The memory is addressable as a whole.

It lacks the ability to address individual elements.

State to state transition is global: updating at each time step.

It lacks the ability to add new concepts from data streams
without forgetting the previous learned ones

1

1

append

PART 2 - Learning algorithmic tasks

NTM; MANN; End-to-End Memory
Network; KV Memory Network; MANTRA
Memory Augmented Network models

In complex tasks, rather than artificially increasing the size of the hidden state in the RNN or LSTM, we would like
to arbitrarily increase the amount of knowledge we add to the model while making minimal changes to the model.

We can augment the model with an independent memory that acts as a knowledge base from which the network
can read and write on demand. This benefits the following:

- Larger memory

- Memory increase should not require increasing number of parameters

- Memory compartmentalization

- Read/Write operations can follow algorithmic rules

This is the Memory Augmented Neural Network (MAN/MANN) model.

Deeper AI tasks requirements

MANN model: gives a neural network an external memory that acts as a knowledge base and the capacity to
learn how to interact with it.

The recurrence reads from a possibly large external memory multiple times before emitting a symbol.

Think of the Controller network as the CPU and the external memory as the RAM.

Memory Augmented Neural Networks

In MANNs the Memory Controller is trained to write symbols in memory and to read what is necessary to produce
the output.

Like an LSTM but, instead of incrementally creating a state, it keeps in memory a set of independent states.

Unlike LSTMs, MANNs encourage local changes in memory. This helps to find the structure in the training data and
to generalize to sequences in algorithmic tasks.

Memory Augmented Neural Networks

Inputs are fed to the LSTM one-by-one, in order.
The LSTM has only one chance to look at an
input symbol.

Place all input symbols in memory and let the
model decide which part to read next.

RNN/LSTM Memory Augmented Neural Network

LSTM/GRU

CONTROLLER
network

Memory Augmented Neural Networks

Credits D. Kumaran et al.

 modified

Neocortex

Hippocampus
Short-term memory

Memory Augmented
Networks MANN

Working memory

Neocortex
Innate and Long-term memory
Deep Networks CNN

While LSTM/GRU emulate human Short-term memory, MANNs emulate the process of the Working Memory in the human brain to
some extent.

Working memory is the whole framework
of retrieval structures and processes used for
the temporary storage and manipulation of
new information.

Pre-frontal cortex
Sensory memory

Memory Networks RNN, LSTM, GRU

Working Memory

Memory Augmented Neural Networks (MANN)

MANN models have an external memory and four components:
I input feature map: converts the input to the internal feature representation
G generalization: updates old memories given a new input
O output feature map: produces a new output given the current input and memory state
R response: converts the output into the desired response format

I R

Input x

I(x) O(I(x), M)

Output

Memory

update

Controller

read

Memory
Memory is an array of objects 𝑚𝑖

M

I Input: converts a sequence of input sentences 𝑥𝑖 into the internal feature representation.

G Generalization: updates the old Memory content (compress and generalize memory for future use)

O Output: given an input and the memory state, computes the output in the feature representation space

R Response: decodes the output features to generate the answer in the desired format.

M
M’

M’

The IGOR Model

Memory is a single hidden state vector that
encodes all the temporal information.

Memory is addesssable as a whole
(all the past information is encoded in the state
vector).

State to state transition is unstructured and
global.

Find some structure in the training data.

The number of parameters is tied to the size of
the hidden state.

Add an external memory matrix with increased
storage capacity.

Memory is element-wise addressable (relevant
items of information can be accessed selectively).
Relies on attention to work.

State to state transitions are obtained through
read/write operations.

Find the structure in the training data, but also
generalize to long sequences in algorithmic tasks.

The number of parameters is not tied to the size of
the memory. Increasing the number of memory
slots will not increase the number of parameters.

Memory networks Memory Augmented Networks

Memory Network models

Episodic vs Persistent Memory

Episodic Persistent

Dataset Training

Example 1

Mem
Net

Mem
Net

Example 2

reset

Mem
Net

reset

Example N…

…

Example 1

Mem
Net

Mem
Net

Example 2

Mem
Net

Example N…

…

Dataset Training

Typically in MANNs the memory is just episodic.

For each example presented to the network we start from an empty memory and perform a sequence of read /
write steps.

The Controller is trained with the Task Loss.

Episodic memories

11

Fig. 9. External memory access pattern [4] ;
inputs are received by network(controller), and after training outputs are read from Read head of controller and with Write head are transmitted to memory for

subsequent referrals. also, Write head has two basic writing steps that can be done to clear the memory(e) or add to memory(a), depending on how you teach and use

the network. The Read head also has the task of reading from the controller and read from the memory.

Graves et al [4] selects five algorithm tasks to examine NTM efficiency, here algorithmic means that for

each task, the final output receives for the input, be computable through a simple program and be easy in

being implemented through any of the common languages. The initial results in this article reveal that

Neural Turing machines are able to have a deduction on algorithms like Copying, Sorting and Associative

recall with inputs and outputs samples. For example, to copy task, the input of which is a sequential binary

vector with fixed length and a limit number of symbols and the objective of the output is to provide a copy

of the protracted input. As for sorting which takes place based on priority sort where the input includes a

sequence input from the binary vectors together with a priority numeric value determined for each factor

and the lengthy inputs in sequence sort of vectors according to their priorities. This test is to measure NTM

to see whether it can be trained through supervised learning in order to implement correct and effective

algorithmic tasks. The obtained solutions from this method are extended to lengthy inputs compared to the

training set, while according to [4, 75], LSTM without external memory is not extendable to lengthy inputs.

NTM machines are designed to resolve problems which need rapidly-created variable rules [76]. The

computer programs usually apply three fundamental mechanisms: 1(Elementary operations (e.g.,

arithmetic operations), 2(Logical flow control (branching), 3(External memory. Most modern learning

machines do not consider logical flow control and external memory.

The three architectures: 1) LSTM RNN, 2) NTM with a forward facing controller, and 3) NTM with a

LSTM controller are assessed in [4]. For each task, both NTM architectures showed better performance

than LSTM RNN in both training set and test data generalization as illustrated in Figures 2 to 6. For

instance, it is observed that learning in NTM is more rapid than mere LSTM that results in reducing costs;

nonetheless, both methods act perfectly.

Credits S. Malekmohammadi

Neural Turing Machine (NTM) is a MANN that learns to read and write data from the external memory at different
time steps to solve a given task.

NTM contains:
- a Network Controller that is responsible for making the interface between the input sequence and the output

representation and the memory through read and write heads.
- a Memory Bank regarded as an array of vectors.

The heads, with the feature generated by the
controller, compute the addressing to
read/write in memory

Neural Turing Machine
A. Graves, G. Wayne, I. Danihelka, 2014

The goal of NTM is to learn an algorithmic task.

NTM learns:

- What to write to memory

- When to write to memory

- When to stop writing

- Which memory cell to read from

- How to convert result of read into final output

Neural Turing Machine
A.Graves, G. Wayne, I. Danihelka 2014

General issue: how to allow addressing in memory? Sometimes we want to select a single element, other times a
small subset or other times the whole memory.

The operations argmax or select index are not differentiable so they cannot be exploited to train with gradient
descent.

M

N

Memory M

Selection

Selection

Read/write
operation

M

N

BackProp

BackProp
Read/write
operation

Memory M

Neural Turing Machine
A.Graves, G. Wayne, I. Danihelka 2014

Blurry operations: interact to a greater or lesser degree with all the elements in memory rather than addressing a
single or few elements directly.

The degree of blurriness is determined by an “attentional focus” mechanism that constrains each Read and Write
operation to interact with a small portion of the memory while ignoring the rest.

The portion of memory brought into attentional focus is determined by normalized weights emitted by the heads.

෍

𝑖

𝑤𝑖 = 1

result

Normalized weights over N elements of the memory

A weight of 1 focuses all the attention on the
corresponding memory location.
A weight of 0 discards that memory location.

Credits A. Graves et al

NTM blurry operations

NTM Attention Model

Attention weights are generated by the Controller network with two distinct addressing mechanisms with
complementary facilities:

Content Based addressing

Focuses attention on locations based on the
similarity between the current memory values
and values emitted by the controller.

Example of application: VQA - score sentences
by similarity with a question.

Weights as softmax of similarity scores.

Location Based addressing

Focuses attention on locations based on the
address of the location.

Example of application: Copy Task - move to
address (i+1) after writing to index (i)

Weights ≈ Transition probabilities.

NTM addressing mechanisms

Steps for generating wt
1. Content Addressing
2. Peaking
3. Interpolation
4. Convolutional Shift (Location Addressing)
5. Sharpening

CA

I

CS

S

1 2

3

4

5

Credits A. Graves et al

Memory key (length M)
produced by the Controller

Control parameters
produced by the Controller

Previous Memory state
(vectors and weights)

NTM addressing steps

Neural Turing Machine: Attention Model

Step 1, 2: Content Addressing and peaking

Prev. State

1

CA

Controller
Outputs

2

controller. More precisely, these parameters are functions of the hidden state

emitted by the controller.

Details of the four operations in the update of one of the heads’ weight vector. At a higher level, this example

can be interpreted as “GOTO pointer, SHIFT LEFT”.

In the content-addressing operation, the NTM focuses its attention on the memory

locations that are “close” to some key. This allows the model to retrieve speciWc

informations in memory. Roughly speaking, a bit like pointers in C. This content-

based weighting is then gated with the weight vector from the previous time-step in

the interpolation operation. If the gate is zero, then the content-addressing is

skipped. On the contrary, if the gate is one, then the previous weights are ignored.

The convolutional shift then smoothly shifts the weights left or right. This is very

close to the head shifting in a classical Turing Machine. Finally, the shifted vector is

sharpened to get a weight vector as focalized as possible. Keep in mind, though, that

none of these operations actually ensures local changes on the memory, despite the

strong emphasis to produce sparse weights. As a consequence, you could end up

with a “blurry” weight vector to weakly queries the whole memory.

Once the head has updated its weight vector, it is ready to operate on the memory. If

it is a read head, it outputs a weighted combination of the memory locations: the

read vector. The latter is then fed back to the controller at the following time-step. If

it is a write head, the content of the memory is modiWed softly (depending on its

weights) with an erase and an add vector, both produced by the controller.

NTM-Lasagne benchmarks and examples
Inspired by the paper from Google DeepMind, we benchmarked our NTM library on

Credits A. Graves et al

The Controller extracts feature kt from the input using a deep
network (an LSTM or a feedforward network) and uses it to
compute the addressing weights.

βt is the temperature of the softmax and is used to amplify or
attenuate the difference in scores.

Content-based addressing and peaking

Content-based addressing

Each head (whether read or write) produces a length M key vector kt that is compared to each vector Mt(i) by a cosine
similarity measure K and produces a normalised weighting wt applying a softmax function on the score K.

Content-based addressing

Neural Turing Machine: Attention Model
Step 3: Interpolation

CA

I

Prev. State

Controller
Outputs

3

Credits A. Graves et al

In content-based addressing focus is only based on the current
input. Interpolation also accounts for previous attention.

It results into a new weight that accounts for both the content-
based focus and the focus in the last timestep.

Interpolation

Neural Turing Machine: Attention Model

CA

Step 4: Convolutional Shift

I

CS

Prev. State

Controller
Outputs

4

normalized shift distribution

Credits A. Graves et al

Convolutional shift handles a shift of focus. It smoothly shifts
the weights left or right.
It creates a focus from a range of rows where the convolution
function is a linear weighted sum of rows.

This mechanism allows NTM to perform basic algorithms like
copy and sort. It is very close to the head shifting in a classical
Turing Machine.

Convolutional Shift

Neural Turing Machine: Attention Model

Prev. State

Controller
Outputs

Step 5: Sharpening
Uses to sharpen as:

CA

I

CS

S

5

Credits A. Graves et al

Sharpening

Read result is a weighted sum

Given:
- memory matrix Mt of size NxM
- wt (weight vector) of length N
- t (time index)

Credits A. Graves et al

Blurry Read Operation

Given:
- memory matrix Mt of size NxM
- wt (weight vector) of length N
- t (time index)

Add Component

Write is the combination of erase and add operations:
- et is an erase vector
- at is a lenght M add vector

Erase Component

Credits A. Graves et al

The memory writing process composes of previous state
and new input and implements a similar mechanism as
the forget and input gates in LSTM

Blurry Write Operation

The attention mechanism decides which parts of the memory the model must focus on.
The controller extracts features kt from the input using a deep network and uses it to compute the attention
weights.

The NTM Controller can be either a Feed-forward network or an LSTM

- Feed-forward: faster, more transparency and interpretability about the learned function
- LSTM: more expressive power, does not limit the number of computations per time step

Comparing the controller to the CPU in a digital computer and the memory matrix to the RAM, then the hidden
activations of the recurrent controller are akin to the registers in the processor.

NTM Controller design

parameters of the model can then be learned using Stochastic Gradient Descent

(SGD). Let ’s describe these components in more details.

Controller

The controller is a neural network that provides the internal representation of the

input that is used by the read and write heads to interact with the memory. Note that

this inner representation is not identical to the one that is eventually stored in

memory, though the latter is a function of this representation.

The type of the controller represents the most signiWcant architectural choice for a

Neural Turing Machine. This controller can be either a feed-forward, or recurrent

neural network. A feed-forward controller has the advantage over a recurrent

controller to be faster, and o_ers more transparency. This comes at the cost of a

lower expressive power though, as it limits the type of computations the NTM can

perform per time-step.

Another example of Neural Turing Machine, where the controller is an LSTM.

Read / Write mechanisms

The read and write heads make the Neural Turing Machines particularly interesting.

They are the only components to ever interact directly with the memory. Internally,

Once the head has updated its weight vector, it is ready to operate on the memory.
If it is a read head, it outputs a weighted combination of the memory locations: the read vector. This is then fed
back to the controller at the following time-step.

If it is a write head, the content of the memory is modified according to weights with an erase and an add vector,
both produced by the controller.

Credits A. Graves et al

NTM Controller unfolded

Backpropagation algorithm end-to-end

Read and write operations are made of products between attention weights and memory. Both are differentiable
with reference to both the memory and the attention weights.

This leads to a fully differentiable model.

It is possible make an end-to-end training with SGD/RMSProp/Adam Optimizers.

Reading

Writing

Credits S. Malekmohammadi

End-to-end training

The goal of NTM is to learn an algorithm: taking input and output and learning algorithms that map from one to
the other, e.g. taking an input and copying it.

We feed the NTM with random inputs, with the corresponding expected outputs from the algorithm we intend
to learn.

No prior knowledge on the nature of the algorithmic task is given to the NTM.

NTM applications

Copying task: the output should be the same 0, 1 pattern of the input. The network will store the input sequence
in the memory and then it will read it back from the memory.

The network is trained with sequences of length 1 to 20 and performs well even if the input length is 80

Credits S. Sukisuki

NTM copy task

Copy task: NTM trained on sequences of lenght 20

Lenght 10 Lenght 20 Lenght 30 Lenght 50

Lenght 120

Credits A. Graves

The NTM is able to generalize to sequences of any length, including sequences longer than what it saw during
training.

NTM copy task

The same task with LSTM

Lenght 10 Lenght 20 Lenght 30 Lenght 50

Lenght 120

Copy task: NTM trained on sequences of lenght 20

Credits A. Graves

LSTM copy task

Neural Turing Machine experiments

Task Network Size Number of Parameters

NTM with LSTM
controller * LSTM *

NTM with LSTM
controller * LSTM *

Copy 3 x 100 3 x 256 67K 1.3M

Repeat Copy 3 x 100 3 x 512 66K 5.3M

Associative Recall 3 x 100 3 x 256 70K 1.3M

N-grams 3 x 100 3 x 128 61K 330K

Priority Sort 2 x 100 3 x 128 269K 385K

* 3 stacked LSTM

Credits A. Graves

NTM tasks

NTM tasks
Dynamic N-gram Associative recall

Priority Call

NTM in practice

https://colab.research.google.com/drive/1I7-va-
TjO5BW39Savzba5q6uhTu-gZPA?usp=sharing

https://colab.research.google.com/drive/1I7-va-TjO5BW39Savzba5q6uhTu-gZPA?usp=sharing
https://colab.research.google.com/drive/1I7-va-TjO5BW39Savzba5q6uhTu-gZPA?usp=sharing

Application: Social Reasoning for Pedestrian Trajectory Prediction

Past

Social Attention

Is understanding social interaction important?

?

?

?

Future

Yes, the pedestrians move observing also the behaviors of others around them.

Past

Future

Application: Social Reasoning for Pedestrian Trajectory Prediction

SMEMO: Social MEMOry for pedestrian trajectory prediction
F. Marchetti et al., 2022

SMEMO is equipped with an external storage that acts as a episodic working memory where the past
information from multiple agents in a scene can be stored and later recalled to make predictions.

SMEMO: Architecture

The upper stream models motion of single agents.

The lower stream interacts with the working memory and stores social information.

A social feature, read from memory, is used to condition the future generation.

Past Trajectories

Recurrent
Decoder

Future Predictions

Recurrent
Motion Encoder

Social________________
Memory_______________
Module_______________

Shared Memory

SMEMO: Addressing

The memory controller outputs at each timestep a feature used by the read/write heads to generate a key.

The key is used to find relevant locations in memory via cosine similarity.

Access weights are obtained by softmax normalizing the similarities.

Recurrent Memory
Controller

Social Memory Module

Memory Key

Addressing
Strength

Memory

Cosine
Similarity

Read/Write
Head Softmax

Softplus

SMEMO: Reading

Separate read heads perform memory addressing to obtain K social features.

Each social feature will condition the decoder to output a separate future prediction.

The social features are pooled together and fed back autoregressively.

Read
HeadRead

Head

Recurrent Memory
Controller

Social Memory Module

Addressing

Σ
Weighted

Sum

Read
Head

Future
Pooling

Memory

Social features

SMEMO: Writing

A single write head performs memory addressing and generates erase and add vectors.

Using the addressed memory content, an Erase Matrix and an Add Matrix are generated.

Social Pooling guarantees invariance to agent ordering.

Social
Pooling

Social
Pooling

Write
Head

Recurrent Memory
Controller

Social Memory Module

Memory

Addressing

Erase Matrix

Add Matrix

×

Outer Product

×

Outer Product

Erase Vector

Add Vector

Sigmoid

Quantitative Results

ETH/UCY

K: number of predictions

SDD

Qualitative Results

Qualitative Results

Qualitative Results: Real Dataset

Group FollowingCollision Avoidance

Synthetic Social Agents Dataset (SSA)

The agents (3 to 10)…
• start from one point on a unit circumference…
• …at different speeds (constant)…
• ...all go towards the center…
• …and must go to the opposite side

Constraint
If two or more agents are close (below a certain
distance threshold):

• the one with the highest
speed passes

• and the others stop.

Past
Future

Quantitative Results: SSA Datasets

Qualitative Results: SSA Dataset

GROUND-TRUTH SMEMO

Qualitative Results: SSA Dataset

GROUND-TRUTH SMEMO

SMEMO: Explainability

Deep learning methods lack the
interpretability of the information
learned from the network.

NN

Input OutputBlack
Box

We want to understand which neighbors
have contributed to the correct generation
of each position of the future trajectory.

Memory
Reading

attention

Example explainability

Example explainability

MANN for one-shot learning task: situations when only a few training examples are presented one-by-one.

The model must learn to associate an image with a label presented with a time-offset

Must learn to hold data samples in memory until the appropriate labels are presented at the next time-step, after
which sample-class information can be bound and stored for later use

Credits A. Santoro et al.

At each time t the correct label
for the previous sample image is
presented
The network must learn the
association between the image
and the last label given

t

Meta-Learning with Memory-Augmented Neural Networks
A. Santoro, et al. ICML 2016

Reading is the same as NTM: when retrieving, a memory Mt is addressed using the cosine similarity measure
which is used to produce a read-weight vector.

Reading

A new memory access method by content with reference to NTM.

Least Recently Used Access criterion:
LRUA writes new information into rarely-used locations, preserving recently encoded information or into the least used
location (update of the memory with newer, possibly more relevant information).

The distinction between these two options is accomplished with an interpolation between the previous read weights
and weights scaled according to usage.

Convex combination of the previous read
weights and previous least-used weights.

Least-used weights

Updated by decaying the previous usage weights
and adding the current read and write weights.

LRUA Writing

The network receives the
sequence of inputs
x1, null , (x2, y1),… , xT, yT−1

Data samples are held in memory until the label is presented.
Then sample-class information is bound into an encoding and stored for later use.

At every episode labels are shuffled across datasets to avoid learning image-to-label fixed associations.

At test time, when the input is presented again, the information is retrieved from memory and decoded to predict the
correct label.

Credits A. Santoro et al.

Training

Dataset

Omniglot: over 1600 separate classes with only a
few examples per class.

After training on 100k episodes with five randomly
chosen classes with a randomly chosen label,
there are a series of test episodes.

The model must predict the class labels for never-
before-seen classes of a disjoint test set.

Result: Human vs Machine

Test-set classification using one-
hot encodings of labels and five
classes presented per episode.

Uses a network with external memory to perform Question Answering.

All sentences are stored in the memory in separate slots.

To answer a query, the sentence which is most relevant is found in the memory through an attention mechanism.

The retrieved sentence is then concatenated with the question to form a new query and look for a new relevant
sentence.

The process is iterated until the model can generate an appropriate answer to the original query.

End-To-End Memory Networks
Sukhbaatar et. al. NeurIPS 2015

Generate
memories

Transform Query

Generate
outputs

Score memories Make averaged
output Response

Credits Sukhbaatar et. al.

End-To-End Memory Networks
Sukhbaatar et. al. NeurIPS 2015

Hop 1

Hop 2

Hop 3

Multi hop: different Memories and Outputs for each hop

Credits Sukhbaatar et. al.

End-To-End Memory Networks
Sukhbaatar et. al. NeurIPS 2015

Results

Mean error
(%)

LSTM MemN2n
1 layer

MemN2n
2 layers

MemN2n
3 layers

bAbI dataset 51.3 25.8 15.6 13.3

Question Answering (QA)

Error (Perplexity) RNN LSTM MemN2n
3 layers

MemN2n
5 layers

MemN2n
7 layers

Penn Treebank
Dataset

129 115 122 118 111

Text8 Dataset 184 154 178 154 147

Language Modeling

Episodic vs Persistent Memory

Episodic Persistent

Dataset Training

Example 1

Mem
Net

Mem
Net

Example 2

reset

Mem
Net

reset

Example N…

…

Example 1

Mem
Net

Mem
Net

Example 2

Mem
Net

Example N…

…

Dataset Training

Alternatively to the case of episodic memory MANNs can have persistent memory

- With NTM, memory is continuously written to and read from, with network learning when to perform
memory read and write operations.

- Using memory as a persistent storage means focusing on retrieving information. The Controller is
trained to write in memory only the examples meaningful for the task.

MANNs with persistent memory

Visual Question Answering with Memory-Augmented Networks
Ma et al.; CVPR2018

Given an input question and a
reference image, the task is to
predict the most accurate answer.

SOTA methods learn to respond to the
majority of training data rather than
specific scarce exemplars.

VQA systems [2, 21] exclude
the rare answer “cucumber”
from the training set.

[2]: S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Batra, C. L. Zitnick, and D. Parikh. VQA: Visual Question Answering. In Proc. IEEE Int. Conf. Comp. Vis., 2015
[21]: J. Lu, J. Yang, D. Batra, and D. Parikh. Hierarchical question-image co-attention for visual question answering. In Proc. Advances in Neural Inf. Process. Syst., 2016.

Architecture

Augmented memory maintains a long-term memory of scarce and uncommon question and answer pairs.

Co-attention attends to the most relevant image regions as well as textual word.

The controller LSTM determines when to write or read from the external augmented memory.

Memory details: reading

The module learns a mechanism that can selectively pay more attention to scarce training items whose effect
is always neglected during a huge amount of training iterations.

Hidden state

Cosine Distance

Read weight vector

Retrieved values from memory

Memory details: writing
Similar to One-shot Learning with Memory Augmented Neural Networks.

Hidden state

Usage weights to control writing to memory.

Usage weights

write weights

Training

Pre-trained VGGNet-16 and ResNet-101 to extract CNN features

Given the output distribution, the network is optimized by minimizing
the Cross-Entropy loss over the input one-hot encoded label vector.

Results

MSCOCO dataset: 200K real images with three questions each.

Each question has ten answers collected from human subjects.

best
second best

Where will the cyclist go?

Trajectory Prediction

Where will the cyclist go?Multiple futures are possible

Trajectory Prediction

MANTRA: Memory Augmented Neural TRAjectory predictor

F. Marchetti et al., “Mantra: Memory augmented networks for multiple trajectory prediction”, CVPR 2020
F. Marchetti et al., “Multiple Trajectory Prediction of Moving Agents with Memory Augmented Networks”, TPAMI 2020

MANTRA: Overview

Credits F. Marchetti et al.

At inference time, the reading
controller exploits the observed past
and context embeddings to access
memory and find the TOP-K similar
scenarios

MANTRA: Inference Time

Each future read from memory is
combined with the current past
and context and is decoded into a
future prediction

MANTRA: Decoding

MANTRA: Multimodal prediction

• To learn effective feature representations, we train encoding and decoding functions as
an autoencoder.

GRU

CNN

Loss: MSE

AutoEncoder for Feature Representation

Credits F. Marchetti et al.

Memory Inspection

AutoEncoder for Feature Representation

Influence of past

Past: 2s
Future: 4s

AutoEncoder for Feature Representation

Writing
controller

MANTRAINPUT PREDICTIONS

GT

E ERROR
(e)

WRITING
PROBABILITY

P(w)

E
𝟙

INPUT

IF > 0.5

INPUT OUTPUT

adaptive miss rate error

1 1
11

1 11

0
0

0

0

0

00

00 0

add

Low error

High error

Reconstruction Loss

Training: writing controller

Reading
controller

=

=

Cosine
similarity

Cosine
similarity

past similarity

context similarity

final similarity

∈ [0,1]

෍ = 1

Training: reading controller

1.5

0.5

7.5

3.5

0.8

1.5

8.5

Error

(, Label: 1)

Loss:
Binary Cross Entropy

Sim

(, Label: 0)

Training: reading controller

KITTI ARGOVERSE

Quantitative Results

KITTI

ARGOVERSE

Qualitative Results

DEMO: Carla simulator

Reading Controller

Keys Values

Similarity function to retrieve the top-K
samples which are used to individually
generate K different futures.

Only one element is responsible
for generating a future trajectory.

Better generalization capabilities.
Robust to outliers or corrupted samples.

Combination of features from different
samples in memory for each prediction.

Obs state

𝜽

Cosine
Similarity

Top-k

Reading states

Values Values Values

Reading state Reading state Reading state

Attention

F. Marchetti et al., “Explainable Sparse Attention for Memory-based Trajectory Predictors”, ECCVw 2022

Multiple read heads extract different
information from memory using different
learnable projection function.

Attention is created by a sparse-max function.

Query Q and Key matrix K are compared using
scaled dot product.

Reading state is a weighted sum of memory
Values with attention scores.

Explainable Sparse Attention Controller (ESA)

Focus only on few relevant elements to the current observation.

Small subset of elements enables a better model explainability.

Sparse-max Attention[4]

Scaled dot product

Sparse-max
1

0

Soft-max
1

0

[4] Martins et Al. : From softmax to sparsemax: A sparse model of attention and multi-label classification, ICML2016

Euclidean projection of the input vector onto the probability simplex.

The projected input hits the boundary of simplex making the output sparse.

Past

Future

Prediction

Instant T

Present

Final Displacement Error

Average Displacement Error

Memonet on SDD

Pedestrians and bicycles
acquired by a bird’s eye view
drone on university campus.

Past: 3.2s – Future: 4.8s

Mantra on KITTI

Hours of navigation in rural
areas and hightways of mid-
size city, Karlsruhe.

Past: 2.0s – Future: 4.0s

Mantra-M on ARGOVERSE

Trajectories acquired in an
area of 1000km2 in the cities
of Pittsburgh and Miami.

Past: 2.0s – Future: 3.0s

In multi-modal setting, we take the best out of K predictions.

Experiments: Dataset & Metrics

KITTI

ARGOVERSE

Quantitative Results

17.18% FDE@4s

14.91% FDE@4s

81.25% Memory Size

60.40% Off-Road

Unit of measurement: meters

SDD

Quantitative Results
Unit of measurement: pixels

Past

Future

Prediction

Drivable area

KITTI ARGOVERSE

SDD

Qualitative Results

Explainability
Argoverse example

Attention vector over memory locations

Plot of semantic maps and
trajectories weighed by ESA
attention.

Evident cause-effect relationship
between memory reading and
the generated output

Explainability
Argoverse example

Attention vector over memory locations

Plot of semantic maps and
trajectories weighed by ESA
attention.

Evident cause-effect relationship
between memory reading and
the generated output

Smoother attention

Attention heatmap over memory

Soft-max: Soft attention vector, no element in memory is clearly identifiable as responsible of the prediction.

Sparse-max: Maps and tracks with positive attentions can be interpreted as a scenario consistent with prediction.

Most attention values are 0

Explainability

Garment Recommendation with Memory Augmented Neural Networks
L. De Divitiis, ICPR 2020

L. De Divitiis et al. ”Garment recommendation with memory augmented neural networks”, ICPRW 2021

L. De Divitiis et al. ”Garment recommendation with memory augmented neural networks”, ICPRW 2021

Garment Recommendation with Memory Augmented Neural Networks

L. De Divitiis et al. ”Disentangling features for fashion recommendation”, TOMM 2022

Garment Recommendation with Memory Augmented Neural Networks
L. De Divitiis et al., TOMM 2022

Disentangled features corresponding to color and shape are stored in two different memory banks.

Garment Recommendation with Memory Augmented Neural Networks
L. De Divitiis et al., TOMM 2022

Disentangled features are learned with an autoencoder with two internal states plus a triplet loss.

L. De Divitiis et al. ”Disentangling features for fashion recommendation”, TOMM 2022

Garment Recommendation with Memory Augmented Neural Networks
L. De Divitiis et al., TOMM 2022

Disentangled features are learned with an autoencoder with two internal states plus a triplet loss.

Reconstruction
losses

Triplet
losses

L. De Divitiis et al. ”Disentangling features for fashion recommendation”, TOMM 2022

Garment Recommendation with Memory Augmented Neural Networks
L. De Divitiis et al., TOMM 2022

The following memory controller loss is used:

When the reconstruction error 𝑑∗ is not normally distributed and does not cover the entire [0, 1] range, the writing
controller can converge to trivial solutions such as «write everything» or «write nothing».

The loss is regularized by normalizing 𝑑∗ and by adding a penalty that enforces the following behaviour:

- samples with errors higher than the Nth-percentile of 𝑑∗should be written in memory

- samples with errors lower than the Nth-percentile of 𝑑∗should not be written in memory

PART3 - Transformers

Talking of memory in computer systems we refer to their storage capacity. In this sense computers have much
better memory than people as they are able to store everything.

Memory in humans is different. Human memory has a limited capacity, and thus attention determines what will
be encoded. Human memory is rather the ability to select information and attend to that.

Memory is attention over time. Attention and memory are important features of human cognition. They cannot
operate without each other.

These intertwined concepts have been used differently in deep learning systems.

Attention and memory

In a CNN, parallelization is trivial per layer. Convolutional filters extract local correlations within the filter window.
The maximum range of a dependency that can be learnt in a layer is the size of the convolutional filter.

Long range dependencies of length n will require O(log n) layers (distance between positions is logarithmic)

Attention in CNNs

In RNNs and LSTMs sequential computation inhibits parallelization.
RNNs and LSTMs do not have a mechanism for modelling item-specific time dependencies.

The entire information is modified, and there is no consideration of what is important and what is not.

Attention in RNNs

In MANNs, the Controller executes sequentially.
Memory is an array of vectors individually addressable. Memory entries can be modified.

An attention vector specifies the magnitude of each memory state that should be extracted.

A A A A
Controller

Neural Turing Machine

Attention in MANNs

Transformers are a type of Encoder-Decoder model. Transformers were developed to solve the problem of sequence
transduction, or neural machine translation.

For models to perform sequence transduction, it is necessary to have some sort of memory.

Transformers

Transformers make use of multi-headed self-attention to perform sequence to sequence tasks such as language
modelling and machine translation.

Self-attention is used to learn long-range dependencies between the elements in a sequence.
Multi-head self-attention is the combination of several attention heads. This is conceptually similar to how a
convolutional layer can consists of multiple convolution filters, with each filter independently extracting
different types of features.

Transformers

The attention mechanism performs a lookup producing a set of weights for each element.
The most relevant elements have the highest attention scores.

Attention in transformers

03/05/21, 12:40The Illust rated Transformer – Jay Alammar – Visualizing machine learning one concept at a t ime.

Pagina 3 di 23ht tp://jalammar.github .io/illust rated- t ransformer/

The encoders are all identical in structure (yet they do not share weights). Each one is broken down into two sub-

layers:

The encoder’s inputs first flow through a self-attention layer – a layer that helps the encoder look at other words in the

input sentence as it encodes a specific word. We’ll look closer at self-attention later in the post.

The outputs of the self-attention layer are fed to a feed-forward neural network. The exact same feed-forward network

is independently applied to each position.

The decoder has both those layers, but between them is an attention layer that helps the decoder focus on relevant

parts of the input sentence (similar what attention does in seq2seq models (https://jalammar.github.io/visualizing-

neural-machine-translation-mechanics-of-seq2seq-models-with-attention/)).

03/05/21, 12:40The Illust rated Transformer – Jay Alammar – Visualizing machine learning one concept at a t ime.

Pagina 4 di 23ht tp://jalammar.github .io/illust rated- t ransformer/

Bringing The Tensors Into The Picture

Now that we’ve seen the major components of the model, let’s start to look at the various vectors/tensors and how

they flow between these components to turn the input of a trained model into an output.

As is the case in NLP applications in general, we begin by turning each input word into a vector using an embedding

algorithm (https://medium.com/deeper-learning/glossary-of-deep-learning-word-embedding-f90c3cec34ca).

Each word is embedded into a vector of size 512. We'll represent those vectors with these simple boxes.

The embedding only happens in the bottom-most encoder. The abstraction that is common to all the encoders is that

they receive a list of vectors each of the size 512 – In the bottom encoder that would be the word embeddings, but in

other encoders, it would be the output of the encoder that’s directly below. The size of this list is hyperparameter we

can set – basically it would be the length of the longest sentence in our training dataset.

After embedding the words in our input sequence, each of them flows through each of the two layers of the encoder.

Transformer encoder-decoder architecture

Self-attention mechanism

03/05/21, 12:40The Illust rated Transformer – Jay Alammar – Visualizing machine learning one concept at a t ime.

Pagina 4 di 23ht tp://jalammar.github .io/illust rated- t ransformer/

Bringing The Tensors Into The Picture

Now that we’ve seen the major components of the model, let’s start to look at the various vectors/tensors and how

they flow between these components to turn the input of a trained model into an output.

As is the case in NLP applications in general, we begin by turning each input word into a vector using an embedding

algorithm (https://medium.com/deeper-learning/glossary-of-deep-learning-word-embedding-f90c3cec34ca).

Each word is embedded into a vector of size 512. We'll represent those vectors with these simple boxes.

The embedding only happens in the bottom-most encoder. The abstraction that is common to all the encoders is that

they receive a list of vectors each of the size 512 – In the bottom encoder that would be the word embeddings, but in

other encoders, it would be the output of the encoder that’s directly below. The size of this list is hyperparameter we

can set – basically it would be the length of the longest sentence in our training dataset.

After embedding the words in our input sequence, each of them flows through each of the two layers of the encoder.

Self-attention is a mechanism used to build representations based on the pair-wise correlations between the elements in
a sequence. Each layer has a complexity of O (n2) for sequences of lenght n. Outputs are weighted sums of the inputs.

From each of the encoder’s input vectors a Query vector, a Key vector, and a Value vector are created by multiplying the
embedding by three matrices learned during the training process.

03/05/21, 12:40The Illust rated Transformer – Jay Alammar – Visualizing machine learning one concept at a t ime.

Pagina 7 di 23ht tp://jalammar.github .io/illust rated- t ransformer/

Multiplying x1 by the WQ weight matrix produces q1, the "query" vector associated with that word. We end up creating a "query", a "key", and

a "value" projection of each word in the input sentence.

What are the “query”, “key”, and “value” vectors?

They’re abstractions that are useful for calculating and thinking about attention. Once you proceed with reading how

attention is calculated below, you’ll know pretty much all you need to know about the role each of these vectors plays.

The second step in calculating self-attention is to calculate a score. Say we’re calculating the self-attention for the

first word in this example, “Thinking”. We need to score each word of the input sentence against this word. The score

determines how much focus to place on other parts of the input sentence as we encode a word at a certain position.

The score is calculated by taking the dot product of the query vector with the key vector of the respective word we’re

scoring. So if we’re processing the self-attention for the word in position #1, the first score would be the dot product of

q1 and k1. The second score would be the dot product of q1 and k2.

03/05/21, 12:56Transformer Architecture - Timothy Liu

Pagina 9 di 20ht tps: //t lkh.dev/t ransformer- model- architecture/

different types of features.

In MHA, each attention head acts on a different subspace of

the input representation in the embedding dimension . This

effectively enables each attention head to work independently

with a hidden dimension of d_embedding//num_heads .

During model training, the parameters in each embedding

subspace are trained separately as part of a part icular self-

attention mechanism.

SELF ATTENTION VS CNN/RNN

Self-at tention is bet ter able to model the long-range

dependencies compared to a convolutional (CNN) or

recurrent neural network (RNN). Unlike either a CNN and

RNN, self-at tention can directly model the long-range

dependencies between elements in a given sequence.

MODELLING DEPENDENCIES WITH CNN AND RNN

Query
Key
Value

Score

03/05/21, 12:56Transformer Architecture - Timothy Liu

Pagina 9 di 20ht tps: //t lkh.dev/t ransformer- model- architecture/

different types of features.

In MHA, each attention head acts on a different subspace of

the input representation in the embedding dimension . This

effectively enables each attention head to work independently

with a hidden dimension of d_embedding//num_heads .

During model training, the parameters in each embedding

subspace are trained separately as part of a part icular self-

attention mechanism.

SELF ATTENTION VS CNN/RNN

Self-at tention is bet ter able to model the long-range

dependencies compared to a convolutional (CNN) or

recurrent neural network (RNN). Unlike either a CNN and

RNN, self-at tention can directly model the long-range

dependencies between elements in a given sequence.

MODELLING DEPENDENCIES WITH CNN AND RNN

Query
Key
Value

The attention scores are calculated between the query vector Q of each element and the key vector K of every other
element in the sequence. The computed attention scores are softmax-normalized and used as weights.

Multiplying each value vector by the softmax score and summing them up let us know how much another item is
relevant to the current item.

03/05/21, 12:40The Illust rated Transformer – Jay Alammar – Visualizing machine learning one concept at a t ime.

Pagina 9 di 23ht tp://jalammar.github .io/illust rated- t ransformer/

That concludes the self-attention calculation. The resulting vector is one we can send along to the feed-forward neural

network. In the actual implementation, however, this calculation is done in matrix form for faster processing. So let’s

look at that now that we’ve seen the intuition of the calculation on the word level.

Matrix Calculation of Self-Attention

The first step is to calculate the Query, Key, and Value matrices. We do that by packing our embeddings into a matrix

X, and multiplying it by the weight matrices we’ve trained (WQ, WK, WV).

Self-attention mechanism

03/05/21, 12:40The Illust rated Transformer – Jay Alammar – Visualizing machine learning one concept at a t ime.

Pagina 12 di 23ht tp://jalammar.github .io/illust rated- t ransformer/

This leaves us with a bit of a challenge. The feed-forward layer is not expecting eight matrices – it’s expecting a single

matrix (a vector for each word). So we need a way to condense these eight down into a single matrix.

How do we do that? We concat the matrices then multiple them by an additional weights matrix WO.

That’s pretty much all there is to multi-headed self-attention. It’s quite a handful of matrices, I realize. Let me try to put

them all in one visual so we can look at them in one place

Now that we have touched upon attention heads, let’s revisit our example from before to see where the different

attention heads are focusing as we encode the word “it” in our example sentence:

With multi-headed self-attention, the network learns different semantic meanings of attention (e.g., one for
vocabulary, one for grammar…)
Separate Q/K/V weight matrices are mantained for each head.
As in the single-head case, we multiply X by the 𝑊𝑄,𝑊𝐾 , 𝑊𝑉 matrices to produce Q, K, V.

Multi-head self-attention

Each block in the encoder has an Add&Normalize operation after the self attention.

Here the input X is added with the attended feature Z and the result is normalized with Layer Normalization.

The skip connection that sums X and Z has the benefit of easing training.

Normalization and skip connections

Decoding is performed one step at a time.
The decoder receives as input both the output of the encoder and the generated output sequence.

Decoding

The structure of the decoder is similar to the one of the encoder.

Two attentions are present in each decoder block:
- At first a self-attention between the generated output tokens is performed
- Then an encoder-decoder attention is performed between the embedded input tokens and the embedded output
tokens

This makes the model explainable with reference to both input and output tokens.

Decoder

Transformers have been developed to address Natural Language
Processing tasks and ovecome the limitations of RNNs.

In principle, Transformers can tackle any problem based on
sequences/sets.

Rapid application explosion in the past few years covering NLP but also
Computer Vision and Machine Learning in general.

Credits S. Khan et al.

Transformer Applications

Language models usually use only a left or right context, treating the problem in an unidirectional way.

BERT achieved a breakthough in NLP by performing a pretraining that exploits bidirectional contexts. The
resulting model can be then finetuned for a variety of NLP tasks.

BERT - Bidirectional Encoder Representations from Transformers
Devlin et al., 2018

The idea is to mask a percentage of the words in a sentence and then predict the masked words.

BERT uses a masking of 15%.

Too little masking makes the model too expensive to train.

Too much masking does not provide sufficient context.

Training strategy: randomly replace the [MASK] token with a random word or with the original word 10% of the time.
Makes word distribution more similar between training and testing time.

BERT - Bidirectional Encoder Representations from Transformers
Devlin et al., 2018

BERT uses a Transformer encoder.

A multi-headed self attention provides an effective way to
model context.

Feed-forward layers capture the non-linearity of the data and
layer norm and residuals help the convergence of the model.

Positional embeddings allow the model to learn relative
positioning.

BERT - Bidirectional Encoder Representations from Transformers
Devlin et al., 2018

Positional embeddings

BERT acts as an effective pretraining for several NLP tasks.

The model can be simply finetuned on specific tasks by changing the classification head.

BERT - Bidirectional Encoder Representations from Transformers
Devlin et al., 2018

In Transformers, self attention is not influenced by distance between tokens (no long-term forgetting).

Transformers are more efficient since matrix multiplication is performed between weights and whole sentences
instead of tokens. Made possible by high parallelization in modern GPUs.

Transformers vs LSTM

Transformers have been exploited also to process different kinds of data than text.

Suitable for any input/output that can be represented as a set of tokens.

Since the inputs are processed in parallel, there is no need for sequential data.

What about images? Images can been seen as a set of pixels/patches.

Image patches in computer vision can be encoded separately into a set of tokens just as words in NLP.

Transformers beyond NLP

The image is split into fixed-size patches, linearly embedded and concatenated with position embeddings.

The sequence of “tokens” is fed to a standard Transformer encoder.

An MLP head is used for classifying images.

Results are explainable thanks to attention.

Vision Transformer (ViT)
A. Dosovitskiy et al. 2020

DETR addresses the problem of object detection as bipartite matching problem, uniquely assigning predictions with
ground truth boxes.

CNN feature maps are considered as a set of vectors describing each pixel and are fed to a transformer. The output
is a set of detections.

DETR – Object Detection with Transformers
N. Carion et al, 2020

DETR uses a conventional CNN backbone to learn a 2D representation of an input image.

The model flattens it and supplements it with a positional encoding before passing it into a transformer encoder.

A transformer decoder then takes as input a small fixed number of learned positional embeddings, called queries, and
additionally attends to the encoder output.

Each output embedding of the decoder is passed to a shared feed forward network (FFN) predicting either a detection
(class and bounding box) or a “no object” class.

DETR – Object Detection with Transformers
N. Carion et al, 2020

Interpretability with reference to input pixels thanks to self-attention.

DETR – Object Detection with Transformers
N. Carion et al, 2020

Interpretability wrt output boxes thanks to input-query attention.

DETR – Object Detection with Transformers
N. Carion et al, 2020

Limitations of transformers

• Parallelization makes transformers computationally efficient, however it restricts a full exploitation of the
sequential nature of the input.

• Temporal information must be manually added to the input using positional encodings.
• Hidden representations only accesses the past representations of lower layers, even though higher-level

representations of the past have already been computed as an autoregressive model.
• At inference time, Transformers generate one token at a time, so they could access these representations for

better performance. Such information is not exploited at training time due to parallelization.
• Lack of recursive computation: the number of possible transformations on the input is bounded by the model

depth.

Sequential tasks with longer sequences

Language Modeling

Standard Transformers

Standard Transformers

Standard Transformers

Standard Transformers: evaluation

Standard Transformers: evaluation

Standard Transformers: evaluation

Standard Transformers: evaluation

Transformer XL

Transformer XL training

Transformer XL training

Transformer XL training

Transformer XL: much longer context

Transformer XL: evaluation

A caveat: temporal incoherence

A caveat: temporal incoherence

Solution: relative positional embedding

Solution: relative positional embedding

Solution: relative positional embedding

Solution: relative positional embedding

Solution: relative positional embedding

Transformer-XL recap

Pros:

- As a result, Transformer-XL learns dependency that is 80% longer than RNNs and 450% longer

than vanilla Transformers

Cons:

- It’s a completely different architecture!

- You need to store previous representation from each layer, and add them in the self attention

at every layer!

Transformer-XL recap

Recurrent Memory Transformer

- Memory tokens are added to the beginning of the input sequence, BUT

in decoder-only architectures the causal attention mask makes impossible for memory
tokens at the start of the sequence to collect information from the subsequent tokens.

- Memory tokens are placed at the end of the sequence, BUT

preceding tokens unable to access their representations. To solve this problem we add
a recurrence to the sequence processing.

Where to put memory + Why recurrency

Recurrent Memory Transformer

Recurrent Memory Transformer

- Augmented Transformer with token based memory storage

- Outperform Transformer-XL on memory-intensive tasks (copy, reverse,
associate retrieval)

Recurrent Memory Transformer

Differences with Transformer-XL

reproduce input
sequence

reverse the input
sequence

N key-value pairs. One key is randomly selected, and

the task is to produce an appropriate value for the

selected key.

Memory Intensive Tasks

A baseline is used exploiting a Transformer-XL without memory

Thank you for attending

Memory Networks

Schedule
PART 0 - Introduction to Neural Networks
PART 1 - Memory Networks

RNN; LSTM; GRU. Applications.
PART 2 - Memory Augmented Neural Networks

NTM; MANN; End-to-End Memory Network;
KV Memory Network; Episodic vs Persistent Memory
Networks; MANTRA; SMEMO. Applications.

PART 3 - Memory and Attention
Transformers; Introductory issues; Transformers and
Memory

DEEP NETWORKS

• Deep Learning

I.Goodfellow, Y. Bengio, A. Courville, MIT Press 2016 (online free)

• Neural Networks and Deep Learning
M. Nielsen, 2017. (online free)

• Deep Learning with Python
F. Chollet, Manning Pubs, 2017

• Hands-On Machine Learning with Scikit-Learn and TensorFlow
A. Géron, O’Reilly Media, 2017

MEMORY NETWORKS

• Long short-term memory

S. Hochreiter; J. Schmidhuber, Neural Computation 1997

• Long-term Recurrent Convolutional Networks for Visual Recognition and Description
J. Donahue, L. A. Hendricks, M. Rohrbach, S. Venugopalan, S. Guadarrama, K. Saenko,
T. Darrell, CVPR 2015

• Stacked Attention Networks for Image Question Answering
Z. Yang, X. He, J. Gao2, L. Deng, A. Smola, CVPR 2017

• Image Captioning with Semantic Attention
Q. You, H. Jin, Z. Wang, C. Fang, J. Luo, CVPR 2016

References

• From captions to visual concepts and back
H. Fang, S. Gupta, F. Iandola, R. Srivastava, L. Deng, P. Dollar, J. Gao, X. He, M. Mitchell, J.
Platt, et al. CVPR 2015

• Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering
P. Anderson, X. He, C, Buehler, D. Teney, M. Johnson, S. Gould L. Zhang, CVPR 2018

• Am I Done? Predicting Action Progress in Videos
F. Becattini, T. Uricchio, L. Seidenari, L. Ballan, A. Del Bimbo, TOMM 2020

• Recurrent Neural Network Tutorial
 D. Britz, 2015

• MEMORY AUGMENTED NETWORKS

• iCaRL: Incremental Classifier and Representation Learning

S. Rebuffi, A. Kolesnikov, G. Sperl, C. H. Lampert, CVPR 2017
• End-To-End Memory Networks,

S. Sukhbaatar, A. Szlam, J. Weston, R. Fergus, NIPS 2015
• Neural Turing Machines

A.Graves, G. Wayne, I. Danihelka, arXiv 2014
• Meta-Learning with Memory-Augmented Neural Networks

A.Santoro, S. Bartunov, M. Botvinick, D.Wierstra, T. Lillicrap, ICML 2016
• Mantra: Memory augmented networks for multiple trajectory prediction
 F. Marchetti, F. Becattini, L. Seidenari, A. Del Bimbo, CVPR 2020
• A review on Neural Turing Machine

S. Malekmohammadi F. Faramarz Safi-Esfahani , ArXiv 2019

• TRANSFORMERS

• Attention is all you need

 A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. Gomez, L. Kaiser, I.

Polosukhin, NIPS 2017

• Bert: Pre-training of deep bidirectional transformers for language understanding.

J. Devlin, M. Chang, K. Lee, K. Toutanova, NAACL 2019

• An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale

A. Dosovitskiyand, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M.
Dehghani, M. Minderer, G. Heigold, S. Gelly and others, ICLR 2021

• End-to-End Object Detection with Transformers

N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, S. Zagoruyko, ECCV 2020

• Transformers in Vision: A Survey

 S. Khan, M. Naseer, M. Hayat, S. Waqas Zamir, F. Shahbaz Khan, M. Shah, arxiv 2021

	Default Section
	Slide 1: Federico Becattini federico.becattini@unisi.it

	Course Details
	Slide 2

	Memory
	Slide 3
	Slide 4
	Slide 5

	RNNs
	Slide 6
	Slide 7: Recurrent Neural Networks: RNN
	Slide 8: Unrolled RNNs
	Slide 9:
	Slide 10
	Slide 11: Recurrent Neural Network: RNN
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19:
	Slide 20:
	Slide 21
	Slide 22:
	Slide 23
	Slide 24: BIDIRECTIONAL RNN
	Slide 25:
	Slide 26
	Slide 27:
	Slide 28
	Slide 29:
	Slide 30
	Slide 31
	Slide 32
	Slide 33:
	Slide 34:
	Slide 35:
	Slide 37
	Slide 38
	Slide 39:
	Slide 40
	Slide 41
	Slide 42: Is a Cell State enough?
	Slide 43: Is Cell State enough?
	Slide 44: Is Cell State enough?
	Slide 45: Is Cell State enough?
	Slide 46: Is Cell State enough?

	MANNs
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53: Memory Augmented Neural Networks (MANN)
	Slide 54
	Slide 55:
	Slide 56: Episodic vs Persistent Memory
	Slide 57:
	Slide 59
	Slide 60:
	Slide 61
	Slide 62
	Slide 63: NTM Attention Model
	Slide 64:
	Slide 65: Neural Turing Machine: Attention Model
	Slide 66:
	Slide 67: Neural Turing Machine: Attention Model
	Slide 68: Neural Turing Machine: Attention Model
	Slide 69: Neural Turing Machine: Attention Model
	Slide 70
	Slide 71
	Slide 74
	Slide 75:
	Slide 76
	Slide 77:
	Slide 78:
	Slide 79:
	Slide 80:
	Slide 81: Neural Turing Machine experiments
	Slide 82: NTM tasks
	Slide 83: NTM in practice
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 103:
	Slide 104:
	Slide 105:
	Slide 106
	Slide 107: Dataset
	Slide 108: Result: Human vs Machine
	Slide 109
	Slide 110
	Slide 111
	Slide 113: Results
	Slide 116: Episodic vs Persistent Memory
	Slide 117:
	Slide 118: Visual Question Answering with Memory-Augmented Networks
	Slide 119: Architecture
	Slide 121: Memory details: reading
	Slide 122: Memory details: writing
	Slide 123: Training
	Slide 124: Results
	Slide 125
	Slide 126
	Slide 127
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143: Reading Controller
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158

	Transformers
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165:
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188: Limitations of transformers
	Slide 189: Sequential tasks with longer sequences
	Slide 190: Language Modeling
	Slide 191: Standard Transformers
	Slide 192: Standard Transformers
	Slide 193: Standard Transformers
	Slide 194: Standard Transformers: evaluation
	Slide 195: Standard Transformers: evaluation
	Slide 196: Standard Transformers: evaluation
	Slide 197: Standard Transformers: evaluation
	Slide 198: Transformer XL
	Slide 199: Transformer XL training
	Slide 200: Transformer XL training
	Slide 201: Transformer XL training
	Slide 202: Transformer XL: much longer context
	Slide 203: Transformer XL: evaluation
	Slide 204: A caveat: temporal incoherence
	Slide 205: A caveat: temporal incoherence
	Slide 206: Solution: relative positional embedding
	Slide 207: Solution: relative positional embedding
	Slide 208: Solution: relative positional embedding
	Slide 209: Solution: relative positional embedding
	Slide 210: Solution: relative positional embedding
	Slide 211
	Slide 212
	Slide 213
	Slide 214: Where to put memory + Why recurrency
	Slide 215
	Slide 216
	Slide 217
	Slide 218
	Slide 219
	Slide 228: Thank you for attending
	Slide 229
	Slide 230:
	Slide 231:

