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A long-standing goal
• To build machines that learn by 

themselves how to navigate 
environments and plan for tasks 

• We need to 

 Equip them with sensing devices for 
visual, auditory, tactile,… stimuli 

 Design algorithms to extract 
information from the observations
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Image credits: MAAS Digital, NASA, JPL
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Supervised learning

• Break down the problem into a set of tasks 

• For each task provide a dataset with input-output pairings (supervision) 

• Train a single model end-to-end to solve all tasks at once (or multiple 
models and then coordinate their operations)
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Does it sound familiar?

• Initially, we solved tasks by defining a set of  
pre-programmed rules and brute force search 

• But we realized that we do not know what the  
best way of solving a task is…
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Should we also revise  
learning from examples?

• If we learn autonomous driving through 
examples… 

• …we would also need to experience  
lots of accidents 

• but is that how humans learn to drive*?

6

*although we certainly learn to walk through lots of falling! 
Adolph et al, “How Do You Learn to Walk? Thousands of Steps and Dozens of Falls Per Day, Psychology Science, 2012 



some thoughts on Supervision



Supervision today
• Multimodal learning shows that  

massive supervision is effective


• Train with multiple signals (eg, images,  
videos, audio, text, segmentations,  
depth, normal maps, bounding boxes)


• Example: PaLM-E  
(562B parms): 520B PaLM + 22B ViT 
Control loop with a robot 
Trained on single image + text prompts


• Works also with a frozen PaLM 

*Driess et al, PaLM-E: An Embodied Multimodal Language Model, ArXiv 2023

Prompt: Human: <instruction>  
Robot: <step history>. I see <img>
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Large Language Models
• LLMs are large models (billions to a trillion parameters) mostly trained on 

billions to trillion words/tokens to predict the next word


• LLMs are trained in an unsupervised manner (predict the next word task) 
 
 

• LLMs such as GPT-X, PaLM-X, LLaMA have demonstrated surprising 
emergent abilities* not observed in small models


• Just learning the correlation in the data (ie, p(new word|previous words)) 
seems to go a very long way

*Wei et al, Emergent Abilities of Large Language Models, TMLR 2022



Natural language supervision
• When is human annotation enough and not confusing to a model? 

 
 
 
 
 
 
 
 
 
 

construction worker in orange 
safety vest is working on road

man is pulling cables 
behind orange machine

?



A conjecture

• Human supervision will eventually limit the learning of large models 
 


• Learning from raw data has the potential for the discovery of more 
patterns and knowledge than what is available in natural language 

• Agents could use natural language to bootstrap their knowledge and to 
interface with human users, but not as the ultimate learning signal 



Self-learning
• Is it possible that there is an uber-task based on self-learning from which all 

the other capabilities emerge? 

• Example: Given some past synchronized signals (eg, image frames, audio, 
tactile input), predict the future synchronized signals (eg, image frames, etc) 
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Images from Epstein et al, Oops! Predicting Unintentional Action in Video, CVPR 2020

past frames future frames



Unsupervised learning
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Why unsupervised learning?

• Why bother with UL when a lot of data with supervision* is readily available 
(eg, LAION)? 

• Current SL methods work extraordinarily well 

• The more supervision we combine, the better the performance (eg, multi-
task learning in Flamingo [Alayrac et al 2022])

14

*although labelling may be unreliable and require further processing



Why unsupervised learning?

• Performance increases with more data (a lot of data), so data collection costs can be 
high, time-consuming and error-prone 

• Human annotation is not scalable  

 Every new task requires new human annotation 

 Specialized tasks require specialized humans (eg the medical domain) — they can 
be scarce and expensive 

• We should at least minimize the human effort

15



Why unsupervised learning?

• Babies learn a great deal in an unsupervised way before  
they develop natural language skills [Gopnik et al,, 2001] 

• “What really reaches us from the outside world is a play of  
colours and shapes, light and sound.” 

• Babies make sense of the world even before they can  
communicate through language effectively

16



Why unsupervised learning?

• Supervision seems to be more of an accelerator for learning 

• Also, how efficient is it to learn from millions of examples? 

 Do children at school learn just from lots of tasks and solutions? 

• Interesting properties emerge from general purpose tasks (eg, fine-tuning 
of LLMs or other SSL-trained models) 

17



Unsupervised learning
 Representation learning: Self-supervised learning 

 Unsupervised segmentation learning  

 Unsupervised learning of controllable systems 

 Unsupervised learning of 3D shapes
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Representation Learning
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Self-Supervised Learning
• The objective is to build features  so that  

 
 
 
 
is a good approximation of    for several tasks (and corresponding 
labels)
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Self-Supervised Learning
• The objective is to build features  so that  

 
 
 
 
is a good approximation of    for several tasks (and corresponding 
labels)

ϕ

p(y |x)

• Ideally,    should be such that   can be “simple” (otherwise    
would be a trivial solution), e.g., a shallow neural network

ϕ p(y |ϕ) ϕ = x

20

p(y |ϕ(x))
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SSL in NLP

• Continuous Bag of Words 
 

• Skip-gram 
 

• BERT

21

Illustrations from https://amitness.com/2020/05/self-supervised-learning-nlp/



The first known SSL in vision
• Exemplar-CNN proposed to build a category for each single image and to 

map all data augmentations of that image to this category 
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Dosovitski et al, Discriminative Unsupervised Feature Learning with Convolutional Neural Networks, NIPS 14



Spatial configuration of parts

• Predict the relative position of object parts and identify 
outliers 

• Features of different object parts must be distinguishable 
from each other  

• but also more similar to each other than to outliers

23

*Doersch et al 2015, Noroozi and Favaro 2016, Mundhenk et al. 2018, Noroozi et al 2018



Global vs local statistics
• Original data 
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Global vs local statistics
• Original data 

 

• Images where the local statistics are the same, but the global ones are not 
 
 

• Supervised learning features do not distinguish well between the two sets

• Mid-range texture* classification is sufficient to solve the supervised task
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*See Jenni et al, Steering Self-Supervised Feature Learning Beyond Local Pixel Statistics, 2020 and  
  Geirhos et al, Imagenet-trained cnns are biased towards texture; increasing shape bias improves accuracy and robustness, 2018



Learning to discriminate global statistics
• Train a network to modify only the global statistics (e.g., 

missing face, disconnected limbs) 

• Features of real objects should be distinguishable from 
features of unrealistic ones 

• The feature representation should allow to discriminate 
global statistics (ie, shapes) 

25

S. Jenni et al, Steering Self-Supervised Feature Learning Beyond Local Pixel Statistics, 2020
*S. Jenni and P. Favaro, Self-Supervised Feature Learning by Learning to Spot Artifacts, 2018



Reconstruction-based
• Features should allow the reconstruction of a data sample 

from its context or other transformed versions of that sample 

• Can be related to denoising AEs  Features are 
encouraged to be invariant to the added “noise” 

• Images which differ by the transformation used in the 
pretext-task are mapped to similar features 
 
 

→

26

  G. Larsson et al, Learning representations for automatic colorization, 2016
  D. Pathak et al, Context encoders: Feature learning by inpainting, 2016
*K. He et al, Masked Autoencoders Are Scalable Learners, CVPR 2022



Contrastive Learning

• Pretext-task explicitly defines which images are similar 
based on data augmentation 

• Network and optimization design provide non trivial 
performance boost (e.g., large minibatches, 
contrastive learning, additional network “head”) 
 

27

*Exemplar-CNN, SimCLR, MoCo, Deep Clustering, SeLa, SwAV 
 Noroozi et al, Representation Learning by Learning to Count, 2017 
 Wang and Gupta, Unsupervised Learning of Visual Representations Using Videos, 2015 



Away from data augmentation
28

Li et al, DreamTeacher: Pretraining Image Backbones with Deep Generative Models, ICCV 2023

SSL by distilling generative models



Object segmentation

• Object segmentation allows to identify pixels that  
belong to a single object 

• In computer vision 
• More accurate than bounding boxes or single points  
• Better understanding of image content (shape information, 

removal of clutter, etc) 

• In image processing 
• Allows advanced editing (background/object 

replacement, composition)

29

*Lan et al “DISCOBOX: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision”, ICCV 2021 
†https://www.colorexpertsbd.com/blog/what-is-image-masking/



Object segmentation labeling
• Manual labeling of segmentation masks in videos is unfeasible 

• Prompted several attempts to learn object segmentation without labels 
• W-net, arxiv 2017 
• MONET, arxiv 2019 
• DeepUSPS, NeurIPS 2019 
• Autoregressive USL, ECCV 2020 
• LOST, BMVC 2021 
• FreeSOLO, CVPR 2022 
• TokenCut, CVPR 2022 
• DeepSpectral, CVPR 2022 
• Seong et al, CVPR 2023
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Built on top of pre-trained SSL features 
(eg, DINO, DenseCL)



Realism as a segmentation signal

• Key idea: Use the segmentation mask to copy, shift and paste an object; 
then, use a “realism”-based metric to rate the composite image 

• If the mask is incorrect, the composite image would have unrealistic 
artifacts (eg, repetitions or split objects that are typically joined) 

• Prior work 
Cut&Paste ECCV 2018, PerturbGAN NeurIPS 2019, Copy-PastingGAN 
arxiv 2019, SEIGAN arxiv 2018

32

A. Bielski and P. Favaro, MOVE: Unsupervised Movable Object Segmentation and Detection, NeurIPS 2022



Learning to MOVE
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Learning to MOVE
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Learning to MOVE
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Moveability is a signal for segmentation
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Foreground mask (too large) Composite image (repetition artifacts)

Moveability is a signal for segmentation
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Moveability is a signal for segmentation
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Foreground mask (too small) Composite image (repetition artifacts)

Moveability is a signal for segmentation
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Moveability is a Signal for Segmentation
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A. Bielski and P. Favaro, MOVE: Unsupervised Movable Object Segmentation and Detection, NeurIPS 2022



Moveability is a Signal for Segmentation
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A. Bielski and P. Favaro, MOVE: Unsupervised Movable Object Segmentation and Detection, NeurIPS 2022
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Segmenting & Inpainting
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Segmenting & Inpainting
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Segmenting & Inpainting
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Segmenting & Inpainting
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Segmenting & Inpainting
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Segmenting & Inpainting
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Composition
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Composition
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Composition
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composite image



Saliency Results (ECSSD)
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Saliency Results (DUTS-TE)
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Saliency Results (DUTS-OMRON)
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Detection (VOC07)

59

Red is ground truth  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Detection (VOC12)
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Red is ground truth  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Detection (COCO20K)
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Red is ground truth  
Yellow is MOVE’s prediction



Saliency Detection

62



Unsupervised Single Object Discovery
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Correct Localization metric (CorLoc): percentage of images, where IoU>0.5 for a predicted single bounding box with at least one of the 
ground truth ones



Unsupervised Single Object Discovery
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Correct Localization metric (CorLoc): percentage of images, where IoU>0.5 for a predicted single bounding box with at least one of the 
ground truth ones
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Unsupervised learning of  
controllable systems

• So far only representations of single images: What about videos? 
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Unsupervised learning of  
controllable systems

• So far only representations of single images: What about videos? 

• We could represent each frame and the transitions across frames

 States are representations of static images

 Actions are representations of the changes/transitions

• One is usually given the actions, but they may not be easily available

 What about a model that learns its action space?

66



Learning by predicting the future
• Goal: A generative controllable model with 

• Predictions: what is the future?  

• Sequence parsing: what is the representation 
of a video in terms of states and actions? 

• Planning: What sequence of actions takes an 
agent between these two states? 

• Counterfactual: eg, what would happen if?

67
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Menapace et al, Playable Environments: Video Manipulation in Space and Time, ArXiv 2022
Menapace et al, Playable Video Generation, CVPR 2021
Blattmann et al, ipoke: Poking a still image for controlled stochastic video synthesis, CVPR 2021



Object Interactions

What would happen if  
I placed a new object  
in front of the robot arm  
and moved the robot  
arm towards it?

68

Has learned object-arm interactionsHas not learned object-arm interactions

simulated scenarios
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Current Progress
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Blattmann et al, iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis, ICCV 2021



Current Progress
• Menapace et al, Playable Video Generation, CVPR 2021 
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Current Progress
• Menapace et al, Playable Environments: Video Manipulation in Space and 

Time, ArXiv 2022 
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Current Progress
• Menapace et al, Playable Environments: Video Manipulation in Space and 

Time, ArXiv 2022 
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Editable Models: DragGAN*
72

*Pan et al. Drag Your GAN: Interactive Point-based Manipulation on the Generative Image Manifold, SIGGRAPH 2023



GLASS

• Global and Local Action-driven Sequence Synthesis (GLASS) 

• Learns two action spaces:  
Global (explicit geometric transformations) and  
Local (photometric transformations) 

• W-Sprites: New dataset to evaluate action identification

73

A. Davtyan and P. Favaro, Controllable Video Generation through Global and Local Motion Dynamics, ECCV 2022
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A. Davtyan and P. Favaro, Controllable Video Generation through Global and Local Motion Dynamics, ECCV 2022



GLASS: Global Action Analysis
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GLASS: Local Action Analysis
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Learned Global Actions: BAIR
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Learned Global Actions: Tennis
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Action Transfer
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Qualitative Evaluation
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input image predicted segmentation foreground background



Experiments: Video Generation
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Image/Video reconstruction on BAIR (Robotic Arm)
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Image/Video reconstruction on Tennis
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Experiments: Video Generation



Object Interactions via YODA*
82

*Davtyan and Favaro,  Learn the Force We Can: Multi-Object Video Generation from Pixel-Level Interactions, tech. report 2023
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Object Interactions via YODA*
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*Davtyan and Favaro,  Learn the Force We Can: Multi-Object Video Generation from Pixel-Level Interactions, tech. report 2023



YODA
83

• Step 1: Train an auto-regressive generative model that outputs the next frame 
given the current frame and an encoding of optical flow 
 
 
 
 
 
 

• Step 2: Use YODA to animate an image by editing the optical flow input 

AR Generatorswitch

OF

current 
frame

next frame



Results
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Sneak Preview
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Sneak Preview
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same initial frame but different inputs: result in different generated videos
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Unsupervised learning of 3D shapes



3D in the wild
91

Given a dataset of real images without: 
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Learn to map 1 image with 1 object to 
its 3D, texture and viewpoint



3D in the wild
91

Given a dataset of real images without: 
1) Multiple views of the same object instance 
2) Annotation: no landmarks, no 3D templates, no viewpoints, no masks, etc

Goal 
Learn to map 1 image with 1 object to 
its 3D, texture and viewpoint

A first step 
Learn to map 1 image with 1 
object to its viewpoint



Unsupervised Viewpoint Estimation
92

compare images globally



Estimate Relative Viewpoints
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Estimate Relative Viewpoints
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Results
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A. Szabó, A.Vedaldi and P. Favaro, Building the View Graph of a Category by Exploiting Image Realism, ICCV Workshop, 2015
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A. Szabó, A.Vedaldi and P. Favaro, Building the View Graph of a Category by Exploiting Image Realism, ICCV Workshop, 2015



3D in the wild
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Given a dataset of real images without: 
1) Multiple views of the same object instance 
2) Annotation: no landmarks, no 3D templates, no viewpoints, no masks, etc
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Unsupervised Learning of 3D  
from an Uncurated Image Collection

97

Map 1 image with 1 object to its 3D, texture and viewpoint



A 3D Generative Model
• The generator G generates 3D, texture and background 

• We render a view via a differentiable renderer from a random viewpoint

• It should look realistic 
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Mapping Images to 3D and Pose
• Combine an encoder with the previous generator to autoencode images 
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Generative Model on CelebA
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Autoencoder on CelebA
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Conclusions
• Unsupervised learning allows scaling and possibly a better generalization 

• Poses lots of interesting and challenging problems 

• It forces a drastic change in how problems are solved 

• In my view a key building block for machines that learn by themselves
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