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A long-standing goal

e o build machines that learn by
themselves how to navigate
environments and plan for tasks

e \We need to

2 Equip them with sensing devices for
visual, auditory, tactile,... stimull

2 Design algorithms to extract
information from the observations

— e ——

Image credits: MAAS Digital, NASA, JPL
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Supervised learning

 Break down the problem into a set of tasks
* For each task provide a dataset with input-output pairings (supervision)

* Train a single model end-to-end to solve all tasks at once (or multiple
models and then coordinate their operations)



Does It sound familiar?

* |nitially, we solved tasks by defining a set of
pre-programmed rules and brute force search

e But we realized that we do not know what the
best way of solving a task is...




Should we also revise
learning from examples®

e |f we learn autonomous driving through
examples...

* ...we would also need to experience
lots of accidents

» but is that how humans learn to drive*? § =

*although we certainly learn to walk through lots of falling!
Adolph et al, “How Do You Learn to Walk? Thousands of Steps and Dozens of Falls Per Day, Psychology Science, 2012



some thoughts on Supervision



Supervision today

 Multimodal learning shows that
massive supervision is effective

* Train with multiple signals (eg, images,
videos, audio, text, segmentations,
depth, normal maps, bounding boxes)

« Example: PaLM-E
(562B parms): 520B PaLM + 22B ViT
Control loop with a robot
Trained on single image + text prompts

e Works also with a frozen PaLM

*Driess et al, PaLM-E: An Embodied Multimodal Language Model, ArXiv 2023

Prompt: Human: <instruction>
Robot: <step history>. I see <img>

Results

We show a few example videos showing how PaLM-E can be used to plan and execute long horizon tasks on two
different real embodiments. Please note, that all of these results were obtained using the same model trained on all
data. In the first video, we execute a long-horizon instruction "bring me the rice chips from the drawer" that
includes multiple planning steps as well as incorporating visual feedback from the robot's camera. Finally, show
another example on the same robot where the instruction is "bring me a green star". Green star is an object that this

robot wasn't directly exposed to.
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| arge Language Models

 LLMs are large models (billions to a trillion parameters) mostly trained on
billions to trillion words/tokens to predict the next word

 LLMs are trained in an unsupervised manner (predict the next word task)

books

/‘ / laptops

\\ exams

minds

 LLMs such as GPT-X, PaLM-X, LLaMA have demonstrated surprising
emergent abilities™ not observed in small models

the students opened their

 Just learning the correlation in the data (ie, p(hew word|previous words))
seems to go a very long way

*Wel et al, Emergent Abilities of Large Language Models, TMLR 2022



Natural [anguage supervision

 When is human annotation enough and not confusing to a model?

construction worker in orange
safety vest is working on road

man is pulling cables
behind orange machine




A conjecture

 Human supervision will eventually limit the learning of large models

* Learning from raw data has the potential for the discovery of more
patterns and knowledge than what is available in natural language

* Agents could use natural language to bootstrap their knowledge and to
interface with human users, but not as the ultimate learning signal
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Self-learning

* |s it possible that there is an uber-task based on self-learning from which all
the other capabilities emerge”

 Example: Given some past synchronized signals (eg, image frames, audio,
tactile input), predict the future synchronized signals (eg, image frames, etc)

past frames =y fUtUre frames

Images from Epstein et al, Oops! Predicting Unintentional Action in Video, CVPR 2020



Unsupervised learning

Information is provi

data view |d

model

task

data view |d’

ded for the whole dataset (eg, a set of data augmentations
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¥ Why unsupervised learning?

 Why bother with UL when a lot of data with supervision™ is readily available
(eg, LAION)?

o Current SL methods work extraordinarily well

* The more supervision we combine, the better the performance (eg, multi-
task learning in Flamingo [Alayrac et al 2022])

*although labelling may be unreliable and require further processing

14
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Why unsupervised learning”?

 Performance increases with more data (a lot of data), so data collection costs can be
high, time-consuming and error-prone

e Human annotation Is not scalable

> Every new task requires new human annotation

> Specialized tasks require specialized humans (eg the medical domain) — they can
be scarce and expensive

e \We should at least minimize the human effort
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Why unsupervised learning”

» Babies learn a great deal in an unsupervised way before  EREIeRYGItNGE (a8
they develop natural language skills [Gopnik et al,, 2001] IN THE CRIRB

WHAT EARLY LEARNING

e “What really reaches us from the outside world is a play of i s gl

colours and shapes, light and sound.”

 Babies make sense of the world even before they can
communicate through language effectively




Why unsupervised learning”?

e Supervision seems to be more of an accelerator for learning
e Also, how efficient is it to learn from millions of examples”
> Do children at school learn just from lots of tasks and solutions®

* |nteresting properties emerge from general purpose tasks (eg, fine-tuning
of LLMs or other SSL-trained models)

17



Unsupervised learning

> Representation learning: Self-supervised learning

> Unsupervised segmentation learning

> Unsupervised learning of controllable systems

> Unsupervised learning of 3D shapes

18



neural network
Representation Learning

data pretext-task neural network attributes
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Selt-Supervised Learning

» The objective is to build features @ so that

p(y|px))

s a good approximation of p(y|x) for several tasks (and corresponding
labels)
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Selt-Supervised Learning

» The objective is to build features @ so that

p(y|px))
N

pre-training

s a good approximation of p(y|x) for several tasks (and corresponding
labels)

. |deally, ¢ should be such that p(y|¢) can be “simple” (otherwise ¢ = x
would be a trivial solution), e.g., a shallow neural network

20
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SSL in NLP

center word

| )
o Continuous Bag of Words wndow A quick brown fox jumps over the lazy dog
Y$>é>rds
« Skip-gram A quick brown fox jumps over the lazy dog

A quick [MASK] fox jumps over the [MASK] dog

. BERT v v
A quick brown fox jumps over the lazy dog

llustrations from https://amitness.com/2020/05/selt-supervised-learning-nlp/



The first known SSL In vision

 Exemplar-CNN proposed to build a category for each single image and to
map all data augmentations of that image to this category

T e
™o N | LAI: -

X e

l.L‘H | 3\\ ’.... Ela

Dosovitski et al, Discriminative Unsupervised Feature Learning with Convolutional Neural Networks, NIPS 14
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Spatial configuration of parts

* Predict the relative position of object parts and identify
outliers

* Features of different object parts must be distinguishable
from each other

e but also more similar to each other than to outliers F+:

*Doersch et al 2015, Noroozi and Favaro 2016, Mundhenk et al. 2018, Noroozi et al 2018

23



GGlobal vs local statistics

* Original data
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GGlobal vs local statistics

* Original data

e Supervised learning features do not distinguish well between the two sets
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GGlobal vs local statistics

Original data

e Supervised learning features do not distinguish well between the two sets

 Mid-range texture™ classification is sufficient to solve the supervised task

*See Jenni et al, Steering Self-Supervised Feature Learning Beyond Local Pixel Statistics, 2020 and
Geirhos et al, Imagenet-trained cnns are biased towards texture; increasing shape bias improves accuracy and robustness, 2018




|_earning to discriminate global statistics

e Jrain a network to modify only the global statistics (e.g.,
missing face, disconnected limbs)

* Features of real objects should be distinguishable from
features of unrealistic ones

* [he feature representation should allow to discriminate
global statistics (ie, shapes)

*S. Jenni and P. Favaro, Self-Supervised Feature Learning by Learning to Spot Artifacts, 2018
S. Jenni et al, Steering Self-Supervised Feature Learning Beyond Local Pixel Statistics, 2020

20



Reconstruction-pased

* Features should allow the reconstruction of a data sample
from its context or other transformed versions of that sample

o Can be related to denoising AEs — Features are
encouraged to be invariant to the added "noise”

* Images which differ by the transformation used in the
oretext-task are mapped to similar features
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*K. He et al, Masked Autoencoders Are Scalable Learners, CVPR 2022
D. Pathak et al, Context encoders: Feature learning by inpainting, 2016
G. Larsson et al, Learning representations for automatic colorization, 2016

20



Contrastive Learning

"B« | . Pretext-task explicitly defines which images are similar
LI . Dbased on data augmentation

 Network and optimization design provide non trivial
performance boost (e.g., large minibatches,
contrastive learning, additional network “head”)

*Exemplar-CNN, SImCLR, MoCo, Deep Clustering, SelLa, SWAV
Noroozi et al, Representation Learning by Learning to Count, 2017
Wang and Gupta, Unsupervised Learning of Visual Representations Using Videos, 2015

2/
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Away from data augmentation

SSL by distilling generative models

Encoder Generator Grzngr Feature Inierpreier Feature Fuse Layer
s latent feat latent feat gt . G5 e Gy o 11 %onv )
v
Real Image

Y .

v .
i > G4 > Feature Fuse Layer [ Resize
v prev 4
-~ G3 * ~ Feature Fuse Layer feat— Corico’r
-~ G2 ! > Feature Fuse Layer [ DWS Conv
Generative Model e
Feature B
Regression Loss oL om

t Teacher Lbel Prediction

N/

Label Distillation
Loss

Image Backbone Feature Regressor
Regressed

PPM Features

>
‘ Hefd Logit Head
]/3 > : » R5 »

1 —

— — R4 ~\ X1
6 I [ "——| Resize — Fuse CX Student Label
1/8 * - p "_R3 J 7 = Prediction
? . — R2 | -~
Feature Distillation Label Distillation

Li et al, DreamTeacher: Pretraining Image Backbones with Deep Generative Models, ICCV 2023



Object segmentation

* Object segmentation allows to identify pixels that
belong to a single object

* |[n computer vision

 More accurate than bounding boxes or single points

» Better understanding of image content (shape information,
removal of clutter, etc)

* |n IMmage processing

 Allows advanced editing (background/object
replacement, composition)

*Lan et al “DISCOBOX: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision”, ICCV 2021
thttps://www.colorexpertsbd.com/blog/what-is-image-masking/

29



Object segmentation labeling

 Manual labeling of segmentation masks in videos is unfeasible

 Prompted several attempts to learn object segmentation without labels

 W-net, arxiv 2017

« MONET, arxiv 2019

e DeepUSPS, NeurlPS 2019

* Autoregressive UsSL, ECCV 2020
| OST, BMVC 2021

* FreeSOLO, CVPR 2022

* TokenCut, CVPR 2022
 DeepSpectral, CVPR 2022
 Seong et al, CVPR 2023




Object segmentation labeling

 Manual labeling of segmentation masks in videos is unfeasible

 Prompted several attempts to learn object segmentation without labels

g | ’
j ‘ e/
N s

W-net, arxiv 2017

MONET, arxiv 2019

DeepUSPS, NeurlPS 2019
Autoregressive USL, ECCV 2020
_OST, BMVC 2021

o

-reesSOLO, CVPR 2022
TokenCut, CVPR 2022
DeepSpectral, CVPR 2022
Seong et al, CVPR 2023

Built on top of pre-trained SSL features
(eg, DINO, DenseCL)

31



Reallsm as a segmentation signal

- Key idea: Use the segmentation mask to copy, shift and paste an object;
then, use a “realism™-based metric to rate the composite Image

e |f the mask Is incorrect, the composite image would have unrealistic
artifacts (eg, repetitions or split objects that are typically joined)

e Prior work

Cut&Paste ECCV 2018, PerturbGAN NeurlPS 2019, Copy-PastingGAN
arxiv 2019, SEIGAN arxiv 2018

A. Bielski and P. Favaro, MOVE: Unsupervised Movable Object Segmentation and Detection, NeurlPS 2022

32



_earning to MOVE

Original image
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_earning to MOVE

MOVEd-object image
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Original image

_earning to MOVE
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Foreground object

_earning to MOVE

(Inpainted) Background

360



Moveabillity is a signal for segmentation

Foreground mask (too large) (Inpainted) Background
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Moveabillity is a signal for segmentation

Foreground mask (too large) Composite image (repetition artifacts)
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Moveabillity is a signal for segmentation

Foreground mask (too small) (Inpainted) Background
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Moveabillity is a signal for segmentation

Foreground mask (too small) Composite image (repetition artifacts)
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Moveabillity is a signal for segmentation

random
shift

> MOVE object

/V

real image

41

discriminator

<v real

* fake

A. Bielski and P. Favaro, MOVE: Unsupervised Movable Object Segmentation and Detection, NeurlPS 2022
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Moveabillity is a signal for segmentation

random

> MOVE object

!byproduct double
Image

real image

» real
discriminator <
'\

fake

no shift

mask

A. Bielski and P. Favaro, MOVE: Unsupervised Movable Object Segmentation and Detection, NeurlPS 2022
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Moveabillity is a signal for segmentation

random

> MOVE object

!byproduct double
Image

real image

» real
discriminator <
'\

fake

no shift

mask

A. Bielski and P. Favaro, MOVE: Unsupervised Movable Object Segmentation and Detection, NeurlPS 2022



Moveability is a Signal for Segmentation

byproduct

real image

mask

> MOVE object —

composite image

discriminator

v real

<

% fake

A. Bielski and P. Favaro, MOVE: Unsupervised Movable Object Segmentation and Detection, NeurlPS 2022
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Moveability is a Signal for Segmentation

byproduct

real image

mask

> MOVE object —

composite image

discriminator

v real

<

% fake

A. Bielski and P. Favaro, MOVE: Unsupervised Movable Object Segmentation and Detection, NeurlPS 2022



Moveabillity is a signal for segmentation

segmenter

/}

MOVE object

inpainter

/v
\A

composer

\»

mask

inpainted
background

composite
image
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Segmenting & Inpainting

input image

<
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N T LI N T
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DINO
encoder

‘ Segmenter \

predicted
mask
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Segmenting & Inpainting
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Segmenting & Inpainting
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Segmenting & Inpainting
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Segmenting & Inpainting
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Segmenting & \npainting
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iInput image
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Detection (VOCQO7)

Red is ground truth

is MOVE'’s prediction
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Detection (VOC12)

Red is ground truth

is MOVE'’s prediction
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Detection (COCO20K)

Red is ground truth

is MOVE'’s prediction

o1



Saliency Detection

02

Model DUT-OMRON DUTS-TE ECSSD

Acc ToU maxFg Acc IoU maxFg AcC IoU maxFp
Deep Spectral - 567 - - 514 - - 733 -
TokenCut 880 .533 600 .903 576 .672 918 .712 .803
FreeSOLO 909 560 .684 924 613 .750 .917 .703 .8358
MOVE (Ours) 913 585  .690  .944 .680 .789 .950 .809 .901
LOST + Bilateral 818 489  .578 887 572 .697 .916 .723 .837
TokenCut + Bilateral 897 .618 697 914 .624 755 .934 772 .874
MOVE (Ours) + Bilateral 925 .627 720 949 .692 811 .952 .804 .906
SelfMask on pseudo™ 923 .609 7133 938 .648 .789 .943 779 .894
SelfMask on pseudo™ + Bilateral 939 677 774 949 694 819 .951 .803 911
SelfMask on MOVE (Ours) 916 .643 139 947 720 .824 .957 .839 .917
SelfMask on MOVE (Ours) + Bilateral 922 .657 743 948 .699 817 .956 .819 912



Unsupervised Single Object Discovery

Method VOCO7 VOC12 COCO20K
FreeSOLO 56.1 56.7 52.8

LOST 61.9 64.0 50.7

Deep Spectral 62.7 66.4 52.2
TokenCut 68.8 72.1 58.8
MOVE (Ours) 73.5 (1 4.7) 76.6 (1 4.5) 63.0 (1 4.2)
LOD + CAD 56.3 61.6 52.7

rOSD + CAD 58.3 62.3 53.0

LOST + CAD 65.7 70.4 57.5
TokenCut + CAD 71.4 75.3 62.6
MOVE (Ours) + CAD 73.6 77.1 65.0
MOVE (Ours) Multi + CAD 74.6 (1 3.2) 79.3 (1 4.0) 68.6 (1 6.0)

Correct Localization metric (CorLoc): percentage of images, where loU>0.5 for a predicted single bounding box with at least one of the

ground truth ones

03



Unsupervised Single Object Discovery

64

Method VOCO7 VOC12 COCO20K
LOD + CAD 56.3 61.6 52.7
rOSD + CAD 58.3 62.3 53.0
LOST + CAD 65.7 70.4 57.5
TokenCut + CAD 71.4 75.3 62.6
MOVE (Ours) + CAD 73.6 77.1 65.0
MOVE (Ours) Multi + CAD 74.6 (1 3.2) 79.3 (1 4.0) 68.6 (1 6.0)

Correct Localization metric (CorLoc): percentage of images, where loU>0.5 for a predicted single bounding box with at least one of the
ground truth ones
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Unsupervised learning of
controllaple systems

e SO far only representations of single images: What about videos?
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Unsupervised learning of
controllaple systems

e SO far only representations of single images: What about videos?
 \We could represent each frame and the transitions across frames

> States are representations of static images

> Actions are representations of the changes/transitions
* One iIs usually given the actions, but they may not be easily available

> \What about a model that learns its action space”

00
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|_earning by predicting the future

 Goal: A generative controllable model with

* Predictions: what is the future®

* Sequence parsing: what is the representation —yi¥:
of a video in terms of states and actions?

* Planning: \What sequence of actions takes an
agent between these two states? . ﬁ
]

Blattmann et al, ipoke: Poking a still image for controlled stochastic video synthesis, CVPR 2021

Menapace et al, Playable Video Generation, CVPR 2021
Menapace et al, Playable Environments: Video Manipulation in Space and Time, ArXiv 2022

 Counterfactual: eg, what would happen if?




Object Interactions

simulated scenarios

—

What would happen if 31\“ ’o . 4 | 3‘,\“ & -
| placed a new object | 'S ‘. : Al \ »
in front of the robot arm |+ J 5 . 2 RS

and moved the robot
arm towards it?

. " wagilh. "
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Has not learned object-arm interactions Has learned object-arm interactions



Object Interactions

simulated scenarios

What would happen if

| placed a new object
INn front of the robot arm
and moved the robot
arm towards it?

/‘ -
& o
\i
| ‘

»

..V -’
\
\
-
\|

._"

Has not learned object-arm interactions

Has learned object-arm interactions

68



Object Interactions

simulated scenarios

What would happen if

| placed a new object
INn front of the robot arm
and moved the robot
arm towards it?

Has not learned object-arm interactions

Has learned object-arm interactions

68



Current Progress

kinematics representation bijective mapping video representation | |
. tempora
r ~ N(O, 1) T9 - T C, L() — Z Z enrollment

— <
- .

GRU

t synthesized

user control sequence

v

ToC \
= e
ﬁ Block 1 —PE ﬁ _»

Input Step 1 Step 2 Output

/ Block k ﬁ\fk \
e N\

Act Act :H: Coupling
Norm :IH: Norm Block

\ Mask Conv A Mask Conv B Mask Conv C Mask Conv D /

Blattmann et al, iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis, ICCV 2021
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Current Progress

 Menapace et al, Playable Video Generation, CVPR 2021

,’Action /'
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Current Progress

 Menapace et al, Playable Video Generation, CVPR 2021
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Current Progress

 Menapace et al, Playable Environments: Video Manipulation in Space and
Time, ArXiv 2022
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Current Progress

 Menapace et al, Playable Environments: Video Manipulation in Space and
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Editable Models: DragGAN*

Latent code w w’ w*
* > ? - see >
Generator ST Motion
supervision supervision

® Handle point
® Target point

ac

User input

Point
tracking

-
-----

Initial image 1st optimization step Update points Final image

*Pan et al. Drag Your GAN: Interactive Point-based Manipulation on the Generative Image Manifold, SIGGRAPH 2023
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GLASS

 Global and Local Action-driven Sequence Synthesis (GLASS)

e | earns two action spaces:
Global (explicit geometric transformations) and
Local (photometric transtormations)

o W-5Sprites: New dataset to evaluate action identification

A. Davtyan and P. Favaro, Controllable Video Generation through Global and Local Motion Dynamics, ECCV 2022
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GLASS: Global Action Analysis




GLASS: Local Action Analysis
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Action Transfer

actions
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Action Transfer
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Experiments: Video Generation

Image/Video reconstruction on BAIR (Robotic Arm)

Method LPIPS| FID| FVDJ]
MoCoGAN [40] 0.466 198 1380
MoCoGAN+ [30] 0.201 66.1 849
SAVP [28 0.433 220 1720
SAVP-+ [30] 0.154 27.2 303
Huang et al. (21| w/ non-param control 0.176 29.3 293
CADDY [30] 0.202 35.9 423
Huang et al. [21] w/ positional control 0.202 28.5 333
Huang et al. [21] w/ affine control 0.201 30.1 292

GLASS 0.118 18.7 411
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Experiments: Video Generation

Image/Video reconstruction on Tennis

81

Method LPIPS] FID| FVD| ADD] MDRJ
MoCoGAN [40] 0.266 132 3400 28.5 20.2
MoCoGAN+ (30} 0.166 56.8 1410 48.2 27.0
SAVP [28 0.245 156 3270  10.7  19.7
SAVP+ [30] 0.104 252 223 134  19.2
Huang et al. (21| w/ non-param control  0.100 8.68 204 1.76 0.306
CADDY [30] 0.102 13.7 239 8.85 1.01
Huang et al. [21] w/ positional control 0.122 10.1 215 4.30 0.300
Huang et al. [21] w/ affine control 0.115 11.2 207 3.40 0.317
GLASS 0.046 7.37 207 2.00 0.214



Object Interactions via YODA*
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*Davtyan and Favaro, Learn the Force We Can: Multi-Object Video Generation from Pixel-Level Interactions, tech. report 2023
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YODA

o Step 1: Train an auto-regressive generative model that outputs the next frame
given the current frame and an encoding of optical flow

current
frame

AR Generator

OF next frame

o Step 2: Use YODA to animate an image by editing the optical flow input
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interaction shows an object pushes the other interaction shows an object detaches from the other
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Sneak Preview

same initial frame but different inputs: result in different generated videos
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Sneak Preview

same initial frame but different inputs: result in different generated videos




Unsupervised learning of 3D shapes



3D In the wilo

Given a dataset of real images without:
1) Multiple views of the same object instance
2) Annotation: no landmarks, no 3D templates, no viewpoints, N0 masks, etc

Goal
Learn to map 1 image with 1 object to
ts 3D, texture and viewpoint

91



3D In the wilo

Given a dataset of real images without:
1) Multiple views of the same object instance
2) Annotation: no landmarks, no 3D templates, no viewpoints, N0 masks, etc

Goal

Learn to map 1 image with 1 object to
ts 3D, texture and viewpoint

A first step
Learn to map 1 image with 1
object to Its viewpoint

91



Unsupervised Viewpoint Estimation
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-stimate Relative Viewpoints

estimate small
viewpoint changes
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-stimate Relative Viewpoints

find integrating path

A¢ A¢
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Results

A. Szabo, A.Vedaldi and P. Favaro, Building the View Graph of a Category by Exploiting Image Realism, ICCV Workshop, 2015
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1) Multiple views of the same object instance
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Unsupervised Learning of 3D
from an Uncurated Image Collection

Map 1 image with 1 object to its 3D, texture and viewpoint

Q7



A 3D Generative Model

* The generator G generates 3D, texture and background
 \We render a view via a differentiable renderer from a random viewpoint

* |t should look realistic
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A 3D Generative Model

* The generator G generates 3D, texture and background
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Mapping Images to 3D and Pose

 Combine an encoder with the previous generator to autoencode images

 Encoder learns to map images to their 3D, texture, pose and backgrounad

Szabo and Favaro, “Unsupervised 3D Shape Learning from Image Collections in the Wild”, arXiv 2018

Szabo et al, Unsupervised Generative 3D Shape Learning from Natural Images, arXiv 2019
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Generative Model on CelebA
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Autoencoder on CelebA
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Conclusions

Unsupervised learning allows scaling and possibly a better generalization
Poses lots of interesting and challenging problems
't forces a drastic change in how problems are solved

In my view a key building block for machines that learn by themselves



