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artificial intelligence and innovations in deep learning, computer vision has become a powerful tool driving transformation in industries.

The computer vision market has been expanding across multiple industries in the past years, leading to an expected growth of $17.4 billion in revenue by 2023 and $41.11
billion by 2030 (according to Allied Market Research).

It may not come as a surprise that businesses like Google and IBM are among the leading advocates of AI-based computer vision solutions. This serves as one of the indicators
that computer vision has a promising future in advancing numerous industries. 

By the end of this article, you’ll have a better understanding of:

1. Computer vision (definition and context)
2. Popular computer vision applications 
3. The future of computer vision in 2023

What is Computer Vision?
Computer vision is a field of artificial intelligence that allows computers to obtain structured and meaningful information from digital images, videos, and other visuals. Based
on this information, actions or recommendations can be given.

Over the past few years, ideas have been flowing when it comes to computer vision applications that use (vision) AI. However, the majority of these ideas remain in their proof
of concept stage (PoC), not yet reaching production with a positive business case. 

So far, we’ve only scratched the surface of vision AI’s potential. Can you imagine how much further it can go if more ideas were executed?!

Check out this hype cycle below for Artificial Intelligence, last updated in 2022 by Gartner. The hype cycle is a graphic presentation that reflects the different stages of a specific
technology, such as maturity, adoption, and social application. 

This graph shows that computer vision is currently past the highest peak on the so-called ‘slope of enlightenment’, preparing to reach a steady plateau (‘plateau of
productivity’), where mainstream adoptions will start to take off. Taking this step first requires the knowledge and expertise missing to build accurate and scalable solutions. 

Popular computer vision applications
We’ve already established that most ideas have not yet gone past their PoC stage in computer vision.

Popular computer vision applications

The future of computer vision in 2023

A flourishing technology

Credit: Gartner's Hype Cycle for Artificial Intelligence for 2022

Computer Vision is currently past the highest peak on the slope of enlightenment, 
preparing to reach platea productivity, where mainstream adoptions will start to take off. 

Computer Vision is the field where most
AI research is being conducted. 

Computer Vision 2022 

Credits Gartner

Computer Vision



Computer Vision research trends 
at CVPR23 

o Render the real. 
Research emphasis this year was on bringing technology closer to reality. 
Top paper categories included: 
3D Computer Vision;  Image and Video Generation;  Understanding Humans
in Video. 

o Create an autonomous ecosystem.        
Research is shifting from how the vehicle may react in an environment to 
planning for how the environment may respond to it. 

o Converge image and language for more sophisticated techniques. 
The technology is expanding from an image or text-based approach to a 
combined effort. Yet converging these modalities with accuracy creates
complicated research challenges. 

o Collaborate to meet market demand. 
More widespread collaboration between academia, government, and 
industry to meet growing technological demands. 

IEEE Computer Society



Alexei A. Efros, CVPR 2023

Credits A. Efros



Conversational abilities
Can analyze and classify text
Can create websites
Can code flawlessly
Can respond to natural language queries
Can answer trivial questions
Can provide language translations

Can create creative content
Can describe images In detail
Can answer questions based on the image *

Features of Chat GPT4

*  Not yet available in the plus version of ChatGPT
Only possible in GPT-4 API, waitlist to join

Credits Barnorama



Visual ChatGPT

Microsoft Research recently open-sourced Visual ChatGPT, 
a chatbot system that can generate and manipulate
images in response to human textual prompts. 

The system combines OpenAI's ChatGPT with 
22 different visual foundation models to support 
multi-modal interactions.

Credits Microsoft Research



Single-object and 
multi-object 

detection
Object recognition

Image 
classification, 

context 
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text
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Image captioning
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images
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resolution

Visual tracking Action recognition

Trending topics in CV and GPT4
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object
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action 
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Video 
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models to create 
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3D Computer 
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visual sequences

Domain 
adaptation and 

transfer learning

Unsupervised and 
Self-Supervised

learning 

Few-Shot and 
Zero-Shot 
learning

Translating across
modalities

Vision beyond the 
visible spectrum

Explainable AI in 
Computer Vision ….

The main use case for GPT-4’s multimodality might be for 
general consumer use rather than for industrial-grade CV tasks.

Task-specific CV models still vastly outperform GPT-4.
Downstream training of GPT

GPT4GPT4

GPT4GPT4GPT4

GPT4

GPT4

….



4 captivating research avenues to consider
(from my perspective)



Learning compatible representations

Credits  F. Pernici, UNIFI
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being Xt the new data and Tt�1 the training-set at step t�1.
In the multi-step upgrading case, we define the following
Multi-model Empirical Compatibility Criterion as follows:

M
�
�Q
t0 ,�

G
t

�
> M

�
�Q
t ,�

G
t

�
8 t0 > t

with t0 2
�
2, 3, . . . ,T

 
and t 2

�
1, 2, . . . , T � 1

 (5)

where �t0 and �t are two different models such that �t is
upgraded before �t0 , T is the number of upgrade steps and
M the metric used to evaluate the performance. Model �t0

is compatible with �t when their cross-test is greater than
the self-test of �t for each pair of upgrade steps. Fig. 2
illustrates the Multi-model Empirical Compatibility Crite-
rion, where {�1,�2, . . . ,�T } are the representation models,
black arrows indicate the model upgrades and gray arrows
represent self and cross-tests.

In order to assess multi-model compatibility of Eq. 5 for a
sequence of T upgrade steps, we define the following square
triangular Compatibility Matrix C :
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where each entry Cij is the performance value according
to metric M , taking model �i for the query-set Q and
model �j for the gallery-set G. Entries on the main diagonal,
i = j, represent the self-tests, while the entries off-diagonal,
i > j, represent the cross-tests. While showing compatibility
performance across multiple upgrade steps, matrix C can
be used to provide a scalar metric to quantify the global
multi-model compatibility in a sequence of upgrade steps.
In particular, we define the Average Multi-model Compatibility

(AC) as the number of times that Eq. 5 is verified with
respect to all its possible occurrences, independently of the
number of the learning steps:
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where 1(·) denotes the indicator function.
Finally, we define the Average Multi-model Accuracy (AM )

as the average of the entries of the Compatibility Matrix:

AM =
2

T (T + 1)

TX
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iX
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Cij (8)

to provide an aggregate value of the accuracy metric M
under compatible training.

4 LEARNING COMPATIBLE REPRESENTATIONS

It is well known that for different initializations a neural
network learns the same subspaces but with different ba-
sis vectors [34], [35]. Therefore, training the network from
scratch with different randomly initialized weights does

not provides similar representations in terms of subspace
geometry. This result excludes compatibility between two
independently trained representation models.

𝜑

(a)

𝜑 𝜑′

(b)

Fig. 3. Learning with incremental fine-tuning with MNIST dataset for 2D
representation. Colored cloud points represent features from the test-
set and gray lines represent classifier prototypes. (a) Initial configuration
(5 classes); (b) Training by fine-tuning (adding the brown-class). The
addition of the new class modifies the spatial configuration and angles
between features.

The alternative of learning with incremental fine-tuning
(i.e., weights are initialized from the previously learned
model) appears to be a more favorable training procedure
to compatibility. However, and perhaps counterintuitively,
this does not help to keep the same subspace representation
geometry regardless of the changes made.

We provide direct evidence of this aspect of feature
learning in Fig. 3 with a toy problem. We trained the
LeNet++ architecture [49] on a subset of the MNIST dataset
setting the output size of the last hidden layer to two (so
resulting in a two-dimensional representation space). The
classifier weights were unit normalized and biases were
set to zero to encourage learning cosine distance between
features ( [50], [51]) and the cross-entropy loss was used. The
model was initially trained with five classes (red, orange,
blue, purple, and green clouds in Fig. 3(a)); then a new
class (brown cloud in Fig. 3(b)) was included in the training-
set and the new model was trained by fine-tuning the old
model on the new training-set of six classes. As the new
class is included in the training-set and the representation
is fine-tuned, the features of the old classes change their
spatial configuration and the mutual angles between clas-
sifier prototypes change as well. This is due to the fact
that linear classifiers maximize inter-class distance to better
discriminate between classes [49]. As a consequence, the
cosine distance comparison between old and new features
cannot be guaranteed. The same effect holds for any number
of classes and feature space dimension.

To limit such spatial configuration changes and therefore
achieve feature compatibility, our approach learns station-
ary features exploiting the properties of fixed classifiers in-
troduced in [27] that we briefly recall in the next subsection.

4.1 Learning Stationary Features with Fixed Classifiers

In [52], [53], a DCNN model with a fixed classification
layer (i.e., not subject to learning) initialized by random
weights was shown to be almost equally effective as a train-
able classifier with substantial saving of computational and
memory requirements. In fixed classifiers, the functional
complexity of the classifier is fully demanded to the internal
layers of the neural network. As the parameters of the

Compatible representation learning aims to learn
representations that can be used interchangeably in time.

In Visual Search it enables the seamless inclusion of 
novel training data into the representation, sidestepping
the necessity of re-indexing the gallery.

Compatible learningNon-compatible learning



AI paradigm is shifting with the rise of foundational models trained on broad data 
that can be adapted to a wide range of downstream tasks. 

Compatible learning is a pivotal strategy for addressing the task of aligning
local fine-tuning with an enhanced iteration of the fundational model.

Credits  F. Pernici, UNIFI

Stationarity and therefore compatibility representation is all you need
N. Biondi, F. Pernici, S. Ricci, A. Del Bimbo 
ArXiv 2023

Learning compatible representations Cores: Compatible representations via stationarity
N. Biondi, F. Pernici, M. Bruni, A. Del Bimbo
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023

Foundational model

Local model Local model

Model replacement

Regular polytope



Networks with external memory
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Fig.  9. External memory access pattern [4]; 
inputs are received by network(controller), and after training outputs are read from Read head of controller and with Write head are transmitted to memory for 

subsequent referrals. also, Write head has two basic writing steps that can be done to clear the memory(e) or add to memory(a), depending on how you teach and use 
the network. The Read head also has the task of reading from the controller and read from the memory. 

Graves et al [4] selects five algorithm tasks to examine NTM efficiency, here algorithmic means that for 
each task, the final output receives for the input, be computable through a simple program and be easy in 
being implemented through any of the common languages. The initial results in this article reveal that 
Neural Turing machines are able to have a deduction on algorithms like Copying, Sorting and Associative 
recall with inputs and outputs samples. For example, to copy task, the input of which is a sequential binary 
vector with fixed length and a limit number of symbols and the objective of the output is to provide a copy 
of the protracted input. As for sorting which takes place based on priority sort where the input includes a 
sequence input from the binary vectors together with a priority numeric value determined for each factor 
and the lengthy inputs in sequence sort of vectors according to their priorities. This test is to measure NTM 
to see whether it can be trained through supervised learning in order to implement correct and effective 
algorithmic tasks. The obtained solutions from this method are extended to lengthy inputs compared to the 
training set, while according to [4, 75], LSTM without external memory  is not extendable to lengthy inputs. 
NTM machines are designed to resolve problems which need rapidly-created variable rules [76]. The 
computer programs usually apply three fundamental mechanisms: 1( Elementary operations (e.g., 
arithmetic operations), 2( Logical flow control (branching), 3( External memory. Most modern learning 
machines do not consider logical flow control and external memory. 

The three architectures: 1) LSTM RNN, 2) NTM with a forward facing controller, and 3) NTM with a 
LSTM controller are assessed in [4]. For each task, both NTM architectures showed better performance 
than LSTM RNN in both training set and test data generalization as illustrated in Figures 2 to 6. For 
instance, it is observed that learning in NTM is more rapid than mere LSTM that results in reducing costs; 
nonetheless, both methods act perfectly. 

Credits S. Malekmohammadi, Keimyung Univ

Credits A. Graves, Google

Distinguishing between explicit facts — that can be stored in an external memory storage, 
and implicit knowledge — that is reflected through the networks’ trainable weights. 

Read value

Write value



Multiple Trajectory Prediction of Moving Agents with Memory Augmented Networks
F. Marchetti, F. Becattini, L. Seidenari, A. Del Bimbo
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020

Memory Augmented Neural Networks to provide predictions reading 
attentions in the trainable memory during the episodes.

Credits  F. Marchetti, UNIFI

Networks with external memory

Mitigates the inflation in number
of parameters needed to store 
large knowledge, extends
the temporal context, improves
model explainability. 

Smemo: Social Memory for Trajectory Forecasting
F. Marchetti, F. Becattini, L. Seidenari, A. Del Bimbo
arXiv preprint, 2022



3D Vision
Understanding and interpreting the details of our surroundings,
3D Computer Vision introduces depth information and a level of understanding
out of reach for traditional 2D Computer Vision systems.

Credits A. Liu, Covariant



3D Vision

Modeling 3D faces and face temporal dynamics
disentangling structural face elements related to the 
identity from deformations related to the movable face 
parts. 

Generate diverse motions even for the same expression. 
Switch from one expression to another dynamically.

. 
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Fig. 2. Overview of our framework: Motion3DGAN generates the motion q(t) of 3D landmarks corresponding to an expression label from a noise
vector z. The module is trained guided by a reconstruction loss Lr and adversarial loss Ladv . The motion q(t) is converted to a sequence of
landmark displacements di, which are fed to S2D-Dec. From each di, the decoder generates a dense displacement Dg

i . A neutral mesh is then
summed to the dense displacements to generate the expressive meshes Sg . S2D-Dec is trained under the guidance of a displacement loss Ldr
and our proposed weighted reconstruction loss Lpr .

weighted sum of an adversarial loss Ladv and a reconstruction
loss Lr such that LM = ↵1Ladv + ↵2Lr .

The adversarial loss is Ladv formulated as:

Ladv = Eq⇠Pq
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In the above equation, the exponential map, expu(.): Tu(C) 7! C
and its inverse, i.e., the logarithm map logu(q): C 7! Tu(C) are
used to map the SRVF data forth and back to a tangent space Tu

defined at a particular point p of C. They are computed as follows:

expu(s) = cos(ksk)u+ sin(ksk) s

ksk , (3)

logu(q) =
dC(q, u)

sin(dC(q, r))
(q � cos(dC(q, u))u), (4)

where dC(q, p) = cos�1(hq, pi) is the geodesic distance between
q and p in C. In (2), q ⇠ Pq is an SRVF sample from the
training set, c is the expression labels pair (e.g., mouth open-
eyebrow, bareteeth-mouth up) that is concatenated to a random
noise z ⇠ Pz . The last term of the adversarial loss represents
the gradient penalty of the Wasserstein GAN [47]. Specifically,
q̂ ⇠ Pq̂ is a random point sampled uniformly along straight
lines between pairs of points sampled from Pq and the generated
distribution Pg:

q̂ = (1� ⌧) logp(q) + ⌧ logp(expp(G(z, c))), (5)

where 0  ⌧  1, and rq̂D(q̂) is the gradient w.r.t. q̂.
Finally, the reconstruction loss is defined as:

Lr = klogp(expp(G(z, c)))� logp(q)k1, (6)

where k.k1, represents the L1-norm, and q is the ground truth
SRVF corresponding to the condition c. The generator and dis-
criminator architectures are similar to [2].

The SRVF representation is reversible, which makes it possible
to recover the curve ↵(t) from a new generated SRVF q(t) by,

↵(t) =
Z t

0
kq(s)kq(s)ds+ ↵(0), (7)

where ↵(0) represents the initial landmark configuration Z(0).
Using this equation, we can apply the generated motion to any
landmark configuration, making it robust to identity changes.

3.2 From Sparse to Dense 3D Expressions: S2D-Dec
Our final goal is to animate the starting mesh Sn to obtain a
novel 3D face Sg reproducing some expression, yet maintaining
the identity structure of Sn. Given this, we point at generating the
displacements of the mesh vertices from the sparse displacements
of the landmarks to animate Sn. In the following, we assume all
the meshes have a fixed topology, and are in full point-to-point
correspondence.

Let L =
n⇣
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n
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a neutral 3D face, Sgt
i = (pgt1 , . . . , pgtN ) 2 RN⇥3 is a 3D

expressive face, Zn
i 2 Rk⇥3 and Zgt

i 2 Rk⇥3 are the 3D
landmarks corresponding to Sn

i and Sgt
i , respectively. We trans-

form this set to a training set of sparse and dense displacements,
L = {(D1, d1) , . . . , (Dm, dm)} such that, Di = Sgt

i � Sn
i

and di = Zgt
i � Zn

i . Our goal here is to find a mapping
h : Rk⇥3 ! RN⇥3 such that Di ⇡ h (di). We designed the
function h as a decoder network (S2D-Dec), where the mapping is
between a sparse displacement of a set of landmarks and the dense
displacement of the entire mesh points. Finally, in order to obtain
the expressive mesh, the dense displacement map is summed to
a 3D face in neutral expression, i.e., Se

i = Sn
i + Di. The S2D-

Dec network is based on the spiral operator proposed in [25].
Our architecture includes five spiral convolution layers, each one
followed by an up-sampling layer. More details on the architecture
can be found in the supplementary material.

In order to train this network, we propose to use two different
losses, one acting directly on the displacements and the other

Generating Multiple 4D Expression Transitions by Learning Face Landmark Trajectories
N. Otberdout, C. Ferrari, M. Daoudi, S. Berretti, A. Del Bimbo
IEEE Transactions on Affective Computing, 2023

Credits  S. Berretti, UNIFI



Neuromorphic Vision

Bio-inspired sensors that, instead of generating streams of synchronous
frames, produce asynchronous events for single pixels where
illumination changes occur. 

ST A N D A R D  C A ME R A
FRAME AS A STRUCTURE FOR LIGHT
(FIXED SAMPLING RATE)

SPARSE INFORMATION CODING
TIME AS LEADING-EDGE INFORMATION
(μS EVENTS SAMPLING)

F R A M E - B A S E D E V E N T - B A S E D

f(t)

t

x(t)
xn-1

tn-1

xn

tn t

t

Y ti

ti+m

X

Pixel  illuminance intensity

Data redundancy

Pixel illuminance intensity

Blind sensor

o Asyncronous sampling of order of µ-sec
o Equivalent temporal precision >10000 fps
o Very low power operation <10mW vs 1W
o Higher dynamic range    >120dB vs 60dB

Neuromorphic cameraStandard camera



Neuromorphic Vision

Credits  F. Becattini, UNISI

Temporal binary representation for event-based action recognition
S Undri Innocenti, F Becattini, F Pernici, A Del Bimbo
Proc. ICPR’20, 2021

Understanding human reactions looking at facial microexpressions 
with an event camera
F Becattini, F Palai, A Del Bimbo
IEEE Transactions on Industrial Informatics, 2022

Neuromorphic vision for motion classification at rates that exceed regular 
cameras, even at a microsecond granularity. 

Neuromorphic vision as a privacy preserving tool beyond humans.



Many other research avenues….
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Logistic regression
"Logit model" redirects here. Not to be confused with Logit function.

In statistics, the logistic model (or logit model) is a statistical model that
models the probability of an event taking place by having the log-odds for
the event be a linear combination of one or more independent variables. In
regression analysis, logistic regression[1] (or logit regression) is
estimating the parameters of a logistic model (the coefficients in the linear
combination). Formally, in binary logistic regression there is a single binary
dependent variable, coded by an indicator variable, where the two values
are labeled "0" and "1", while the independent variables can each be a
binary variable (two classes, coded by an indicator variable) or a
continuous variable (any real value). The corresponding probability of the
value labeled "1" can vary between 0 (certainly the value "0") and 1
(certainly the value "1"), hence the labeling;[2] the function that converts
log-odds to probability is the logistic function, hence the name. The unit
of measurement for the log-odds scale is called a logit, from logistic unit,
hence the alternative names. See § Background and § Definition for formal
mathematics, and § Example for a worked example.

Binary variables are widely used in statistics to model the probability of a
certain class or event taking place, such as the probability of a team
winning, of a patient being healthy, etc. (see § Applications), and the
logistic model has been the most commonly used model for binary
regression since about 1970.[3] Binary variables can be generalized to
categorical variables when there are more than two possible values (e.g.
whether an image is of a cat, dog, lion, etc.), and the binary logistic
regression generalized to multinomial logistic regression. If the multiple
categories are ordered, one can use the ordinal logistic regression (for
example the proportional odds ordinal logistic model[4]). See § Extensions
for further extensions. The logistic regression model itself simply models


